3,983 research outputs found
Internal-state thermometry by depletion spectroscopy in a cold guided beam of formaldehyde
We present measurements of the internal state distribution of
electrostatically guided formaldehyde. Upon excitation with continuous tunable
ultraviolet laser light the molecules dissociate, leading to a decrease in the
molecular flux. The population of individual guided states is measured by
addressing transitions originating from them. The measured populations of
selected states show good agreement with theoretical calculations for different
temperatures of the molecule source. The purity of the guided beam as deduced
from the entropy of the guided sample using a source temperature of 150K
corresponds to that of a thermal ensemble with a temperature of about 30 K
Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity
Neptune's largest satellite, Triton, is one of the most fascinating and
enigmatic bodies in the solar system. Among its numerous interesting traits,
Triton appears to have far fewer craters than would be expected if its surface
was primordial. Here we combine the best available crater count data for Triton
with improved estimates of impact rates by including the Kuiper Belt as a
source of impactors. We find that the population of impactors creating the
smallest observed craters on Triton must be sub-km in scale, and that this
small-impactor population can be best fit by a differential power-law size
index near -3. Such results provide interesting, indirect probes of the unseen
small body population of the Kuiper Belt. Based on the modern, Kuiper Belt and
Oort Cloud impactor flux estimates, we also recalculate estimated ages for
several regions of Triton's surface imaged by Voyager 2, and find that Triton
was probably active on a time scale no greater than 0.1-0.3 Gyr ago (indicating
Triton was still active after some 90% to 98% of the age of the solar system),
and perhaps even more recently. The time-averaged volumetric resurfacing rate
on Triton implied by these results, 0.01 km yr or more, is likely
second only to Io and Europa in the outer solar system, and is within an order
of magnitude of estimates for Venus and for the Earth's intraplate zones. This
finding indicates that Triton likely remains a highly geologically active world
at present, some 4.5 Gyr after its formation. We briefly speculate on how such
a situation might obtain.Comment: 14 pages (TeX), plus 2 postscript figures Stern & McKinnon, 2000, AJ,
in pres
Desenvolvimento de um programa integrado de controle dos nematodeos e a mosca-dos-chifres na região dos cerrados. Fase 5. Efeito da mosca-dos-chifres sobre o ganho de peso de vacas e bezerros Nelore.
bitstream/item/132390/1/COT-46.pdfCNPGC
Small crater populations on Vesta
The NASA Dawn mission has extensively examined the surface of asteroid Vesta,
the second most massive body in the main belt. The high quality of the gathered
data provides us with an unique opportunity to determine the surface and
internal properties of one of the most important and intriguing main belt
asteroids (MBAs). In this paper, we focus on the size frequency distributions
(SFDs) of sub-kilometer impact craters observed at high spatial resolution on
several selected young terrains on Vesta. These small crater populations offer
an excellent opportunity to determine the nature of their asteroidal precursors
(namely MBAs) at sizes that are not directly observable from ground-based
telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA
surfaces observed by spacecraft thus far, the young terrains examined had
crater spatial densities that were far from empirical saturation. Overall, we
find that the cumulative power-law index (slope) of small crater SFDs on Vesta
is fairly consistent with predictions derived from current collisional and
dynamical models down to a projectile size of ~10 m diameter (Bottke et al.,
2005a,b). The shape of the impactor SFD for small projectile sizes does not
appear to have changed over the last several billions of years, and an argument
can be made that the absolute number of small MBAs has remained roughly
constant (within a factor of 2) over the same time period. The apparent steady
state nature of the main belt population potentially provides us with a set of
intriguing constraints that can be used to glean insights into the physical
evolution of individual MBAs as well as the main belt as an ensemble.Comment: Accepted by PSS, to appear on Vesta cratering special issu
Inhibition of purple acid phosphatase with a-alkoxynaphthylmethylphosphonic acids
Purple acid phosphatases (PAPs) are binuclear hydrolases that catalyse the hydrolysis of a range of phosphorylated
substrates. Human PAP is a major histochemical marker for the diagnosis of osteoporosis. In
patients suffering from this disorder, PAP activity contributes to increased bone resorption and, therefore,
human PAP is a key target for the development of anti-osteoporotic drugs. This manuscript describes the
design and synthesis of derivatives of 1-naphthylmethylphosphonic acids as inhibitors of PAP. The Ki values
of these compounds are as low as 4 lM, the lowest reported to date for a PAP inhibitor
Electrostatic extraction of cold molecules from a cryogenic reservoir
We present a method which delivers a continuous, high-density beam of slow
and internally cold polar molecules. In our source, warm molecules are first
cooled by collisions with a cryogenic helium buffer gas. Cold molecules are
then extracted by means of an electrostatic quadrupole guide. For ND the
source produces fluxes up to molecules/s with
peak densities up to molecules/cm. For
HCO the population of rovibrational states is monitored by depletion
spectroscopy, resulting in single-state populations up to .Comment: 4 pages, 4 figures, changes to the text, updated figures and
reference
Two-dimensional wetting layer structures of reduced ternary oxides on Ru(0001) and Pt(111)
Long-range ordered structures of reduced oxide films with monolayer thickness derived from BaTiO3 and SrTiO3 on Ru(0001) and Pt(111) are investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Upon ultrahigh vacuum annealing at 1100 K, a hexagonal phase is observed for BaTiO3 on Ru(0001), which forms similarly from SrTiO3 on Pt(111). At higher temperatures, a triangle–square tiling called σ-phase develops in the BaTiO3/Ru(0001) system, with a unit cell rotation of 15° against the Ru(0001) substrate. Furthermore, it is shown that this 15° rotated σ-phase also forms in the BaTiO3/Pt(111) system in addition to the already known 8° rotated σ-phase. The results emphasize a strong flexibility in the structural parameters of the reduced oxide wetting layers in response to the substrate interaction strength
Competitiveness and communication for effective inoculation byRhizobium, Bradyrhizobium and vesicular-arbuscular mycorrhiza fungi
After a short summary on the ecology and rhizosphere biology of symbiotic bacteria and vesicular-arbuscular (VA) mycorrhiza fungi and their application as microbial inocula, results on competitiveness and communication are summarized. Stress factors such as high temperature, low soil pH, aluminium concentrations and phytoalexins produced by the host plants were studied withRhizobium leguminosarum bv.phaseoli andRhizobium tropici onPhaseolus beans. Quantitative data for competitiveness were obtained by usinggus + (glucoronidase) labelled strains, which produce blue-coloured nodules. ForPhaseolus-nodulating rhizobia, a group specific DNA probe was also developed, which did not hybridize with more than 20 other common soil and rhizosphere bacteria. Results from several laboratories contributing to knowledge of signal exchange and communication in theRhizobium/Bradyrhizobium legume system are summarized in a new scheme, including also defense reactions at the early stages of legume nodule initiation. Stimulating effects of flavonoids on germination and growth of VA mycorrhiza fungi were also found. A constitutive antifungal compound in pea roots, -isoxazolinonyl-alanine, was characterized
Making the Best of Polymers with Sulfur–Nitrogen Bonds: From Sources to Innovative Materials
Polymers with sulfur–nitrogen bonds have been underestimated for a long time, although the intrinsic characteristics of these polymers offer a myriad of superior properties (e.g., degradation, flame retardancy, film‐forming ability, good solubility in polar solvents, and high refractivity with small chromatic dispersions, among other things) compared to their carbon analogues. The remarkable characteristics of these polymers result from the unique chemical properties of the sulfur–nitrogen bond (e.g., its polar character and the multiple valence states of sulfur), and thus open excellent perspectives for the development of innovative (bio)materials. Accordingly, this review describes the most common chemical approaches toward the efficient synthesis of these ubiquitous polymers possessing diverse sulfur–nitrogen bonds, and furthermore highlights their applications in multiple fields, ranging from biomedicine to energy storage, with the aim of providing an informative perspective on challenges facing the synthesis of sulfur–nitrogen polymers with desirable properties
Volcanism on Io: Insights from Global Geologic Mapping
We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation
- …