12,401 research outputs found

    Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation

    Get PDF
    We present results of simulations of a em quantum Boltzmann master equation (QBME) describing the kinetics of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the simplest version of a quantum kinetic master equations derived in previous work. We consider two cases of trapping potentials: a 3D square well potential with periodic boundary conditions, and an isotropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions, and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure

    Discontinuous Percolation Transitions in Epidemic Processes, Surface Depinning in Random Media and Hamiltonian Random Graphs

    Full text link
    Discontinuous percolation transitions and the associated tricritical points are manifest in a wide range of both equilibrium and non-equilibrium cooperative phenomena. To demonstrate this, we present and relate the continuous and first order behaviors in two different classes of models: The first are generalized epidemic processes (GEP) that describe in their spatially embedded version - either on or off a regular lattice - compact or fractal cluster growth in random media at zero temperature. A random graph version of GEP is mapped onto a model previously proposed for complex social contagion. We compute detailed phase diagrams and compare our numerical results at the tricritical point in d = 3 with field theory predictions of Janssen et al. [Phys. Rev. E 70, 026114 (2004)]. The second class consists of exponential ("Hamiltonian", or formally equilibrium) random graph models and includes the Strauss and the 2-star model, where 'chemical potentials' control the densities of links, triangles or 2-stars. When the chemical potentials in either graph model are O(logN), the percolation transition can coincide with a first order phase transition in the density of links, making the former also discontinuous. Hysteresis loops can then be of mixed order, with second order behavior for decreasing link fugacity, and a jump (first order) when it increases

    An Updated Ultraviolet Calibration for the Swift/UVOT

    Full text link
    We present an updated calibration of the Swift/UVOT broadband ultraviolet (uvw1, uvm2, and uvw2) filters. The new calibration accounts for the ~1% per year decline in the UVOT sensitivity observed in all filters, and makes use of additional calibration sources with a wider range of colours and with HST spectrophotometry. In this paper we present the new effective area curves and instrumental photometric zeropoints and compare with the previous calibration.Comment: 4 pages, 3 figures, 2 tables. Presented at GRB 2010 symposium, Annapolis, November 2010 to be published in American Institute of Physics Conference Serie

    Large classical universes emerging from quantum cosmology

    Full text link
    It is generally believed that one cannot obtain a large Universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the Universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the Universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the Universe leave the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the abovementioned problem, induces a large acceleration around the quantum bounce, forcing the Universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any transplanckian problem.Comment: 8 pages, 1 figur

    A Bohmian approach to quantum fractals

    Get PDF
    A quantum fractal is a wavefunction with a real and an imaginary part continuous everywhere, but differentiable nowhere. This lack of differentiability has been used as an argument to deny the general validity of Bohmian mechanics (and other trajectory--based approaches) in providing a complete interpretation of quantum mechanics. Here, this assertion is overcome by means of a formal extension of Bohmian mechanics based on a limiting approach. Within this novel formulation, the particle dynamics is always satisfactorily described by a well defined equation of motion. In particular, in the case of guidance under quantum fractals, the corresponding trajectories will also be fractal.Comment: 19 pages, 3 figures (revised version

    The Surface Brightness Fluctuations and Globular Cluster Populations of M87 and its Companions

    Get PDF
    Using the surface brightness fluctuations in HST WFPC-2 images, we determine that M87, NGC 4486B, and NGC 4478 are all at a distance of ~16 Mpc, while NGC 4476 lies in the background at ~21 Mpc. We also examine the globular clusters of M87 using archived HST fields. We detect the bimodal color distribution, and find that the amplitude of the red peak relative to the blue peak is greatest near the center. This feature is in good agreement with the merger model of elliptical galaxy formation, where some of the clusters originated in progenitor galaxies while other formed during mergers.Comment: 5 pages, 2 figure

    A hidden dimension? Work ideology and psychological contracts.

    Get PDF
    This paper explores whether the concept of psychological contracts underpinned by relational/transactional exchanges provides an adequate description of knowledge workers’ contracts. Interviews were conducted with scientists from the CSIRO. The analysis identified content of the psychological contract for the knowledge worker best understood by reference to an ideological currency. It raises questions over the role of normative occupation-specific beliefs about work, and the sharing of common currency elements by individuals in the same organization within the same occupation. The analysis lends support to calls in the literature for a reconsideration of the transactional/relational interpretative framework that underpins the psychological contract

    A model for simulating dynamic problems of economic development

    Get PDF
    At head of title: Economic dynamics"July 1960."Includes bibliographic references (p. 198-203
    • …
    corecore