783 research outputs found
Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy
The one-dimensional reconstruction of Au/Ge(001) was investigated by means of
autocorrelation functions from surface x-ray diffraction (SXRD) and scanning
tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson
map are substantiated by results from STM. The Au coverage, recently determined
to be 3/4 of a monolayer of gold, together with SXRD leads to three
non-equivalent positions for Au within the c(8x2) unit cell. Combined with
structural information from STM topography and line profiling, two building
blocks are identified: Au-Ge hetero-dimers within the top wire architecture and
Au homo-dimers within the trenches. The incorporation of both components is
discussed using density functional theory and model based Patterson maps by
substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure
Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering
We obtain explicit expressions for the correlation functions of transmission
and reflection coefficients of coherent electronic waves propagating through a
disordered quasi-one-dimensional medium with purely elastic diffusive
scattering in the presence of spin-orbit interactions. We find in the metallic
regime both large local intensity fluctuations and long-range correlations
which ultimately lead to universal conductance fluctuations. We show that the
main effect of spin-orbit scattering is to suppress both local and long-range
intensity fluctuations by a universal symmetry factor 4. We use a scattering
approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of
Oxford), to appear in Phys. Rev.
Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring
We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with
two different four-terminal configurations. While the amplitude and the phase
of the AB oscillations are well explained within the framework of the
Landaur-B\"uttiker formalism, it is found that the probe configuration strongly
affects the coherence time of the electrons, i.e., the decoherence is much
reduced in the configuration of so-called nonlocal resistance. This result
should provide an important clue in clarifying the mechanism of quantum
decoherence in solids.Comment: 4 pages, 4 figures, RevTe
Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)
The magnetic state and magnetic coupling of individual atoms in nanoscale
structures relies on a delicate balance between different interactions with the
atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the
self-assembled formation of highly ordered bilayer structures of Fe atoms and
organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe
atoms are encaged in a three-dimensional coordination motif by three T4PT
molecules in the surface plane and an additional T4PT unit on top. Within this
crystal field, the Fe atoms retain a magnetic ground state with easy-axis
anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic
circular dichroism. The magnetization curves reveal the existence of
ferromagnetic coupling between the Fe centers
Anomalous Conductance Distribution in Quasi-One Dimension: Possible Violation of One-Parameter Scaling Hypothesis
We report measurements of conductance distribution in a set of
quasi-one-dimensional gold wires. The distribution includes the second cumulant
or the variance which describes the universal conductance fluctuations, and the
third cumulant which denotes the leading deviation. We have observed an
asymmetric contribution--or, a nonvanishing third cumulant--contrary to the
expectation for quasi-one-dimensional systems in the noninteracting theories in
the one-parameter scaling framework, which include the perturbative
diagrammatic calculations and the random matrix theory.Comment: 5 PAGE
Decay of one dimensional surface modulations
The relaxation process of one dimensional surface modulations is re-examined.
Surface evolution is described in terms of a standard step flow model.
Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz
D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the
discrete step model into a continuum model for surface dynamics. The model
consists of differential equations for the functions alpha(t) and F(x). The
solutions of these equations agree with simulation results of the discrete step
model. We identify two types of possible scaling solutions. Solutions of the
first type have facets at the extremum points, while in solutions of the second
type the facets are replaced by cusps. Interactions between steps of opposite
signs determine whether a system is of the first or second type. Finally, we
relate our model to an actual experiment and find good agreement between a
measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file
The profile of a decaying crystalline cone
The decay of a crystalline cone below the roughening transition is studied.
We consider local mass transport through surface diffusion, focusing on the two
cases of diffusion limited and attachment-detachment limited step kinetics. In
both cases, we describe the decay kinetics in terms of step flow models.
Numerical simulations of the models indicate that in the attachment-detachment
limited case the system undergoes a step bunching instability if the repulsive
interactions between steps are weak. Such an instability does not occur in the
diffusion limited case. In stable cases the height profile, h(r,t), is flat at
radii r<R(t)\sim t^{1/4}. Outside this flat region the height profile obeys the
scaling scenario \partial h/\partial r = {\cal F}(r t^{-1/4}). A scaling ansatz
for the time-dependent profile of the cone yields analytical values for the
scaling exponents and a differential equation for the scaling function. In the
long time limit this equation provides an exact description of the discrete
step dynamics. It admits a family of solutions and the mechanism responsible
for the selection of a unique scaling function is discussed in detail. Finally
we generalize the model and consider permeable steps by allowing direct adatom
hops between neighboring terraces. We argue that step permeability does not
change the scaling behavior of the system, and its only effect is a
renormalization of some of the parameters.Comment: 25 pages, 18 postscript figure
Density-functional study of hydrogen chemisorption on vicinal Si(001) surfaces
Relaxed atomic geometries and chemisorption energies have been calculated for
the dissociative adsorption of molecular hydrogen on vicinal Si(001) surfaces.
We employ density-functional theory, together with a pseudopotential for Si,
and apply the generalized gradient approximation by Perdew and Wang to the
exchange-correlation functional. We find the double-atomic-height rebonded D_B
step, which is known to be stable on the clean surface, to remain stable on
partially hydrogen-covered surfaces. The H atoms preferentially bind to the Si
atoms at the rebonded step edge, with a chemisorption energy difference with
respect to the terrace sites of >sim 0.1 eV. A surface with rebonded single
atomic height S_A and S_B steps gives very similar results. The interaction
between H-Si-Si-H mono-hydride units is shown to be unimportant for the
calculation of the step-edge hydrogen-occupation. Our results confirm the
interpretation and results of the recent H_2 adsorption experiments on vicinal
Si surfaces by Raschke and Hoefer described in the preceding paper.Comment: 13 pages, 8 figures, submitted to Phys. Rev. B. Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Magnetic Field Effects on the Transport Properties of One-sided Rough Wires
We present a detailed numerical analysis of the effect of a magnetic field on
the transport properties of a `small-' one-sided surface disordered wire.
When time reversal symmetry is broken due to a magnetic field , we find a
strong increase with not only of the localization length but also of
the mean free path caused by boundary states. Despite this, the
universal relationship between and does hold. We also analyze the
conductance distribution at the metal-insulator crossover, finding a very good
agreement with Random Matrix Theory with two fluctuating channels within the
Circular Orthogonal(Unitary) Ensemble in absence(presence) of Comment: 5 pages, 4 figures, to appear in Phys. Rev.
Profile scaling in decay of nanostructures
The flattening of a crystal cone below its roughening transition is studied
by means of a step flow model. Numerical and analytical analyses show that the
height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The
scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter
family of solutions for the scaling function, and propose a selection criterion
for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure
- …
