372 research outputs found

    Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Full text link
    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2x_{2-x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx_x) at the surface during vacuum annealing at temperatures as low as 600 {\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx_x surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2_2 thin films prepared and measured under identical conditions, the formation of HfCx_x was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating

    Structural and electronic properties of Pb1-xCdxTe and Pb1-xMnxTe ternary alloys

    Full text link
    A systematic theoretical study of two PbTe-based ternary alloys, Pb1-xCdxTe and Pb1-xMnxTe, is reported. First, using ab initio methods we study the stability of the crystal structure of CdTe - PbTe solid solutions, to predict the composition for which rock-salt structure of PbTe changes into zinc-blende structure of CdTe. The dependence of the lattice parameter on Cd (Mn) content x in the mixed crystals is studied by the same methods. The obtained decrease of the lattice constant with x agrees with what is observed in both alloys. The band structures of PbTe-based ternary compounds are calculated within a tight-binding approach. To describe correctly the constituent materials new tight-binding parameterizations for PbTe and MnTe bulk crystals as well as a tight-binding description of rock-salt CdTe are proposed. For both studied ternary alloys, the calculated band gap in the L point increases with x, in qualitative agreement with photoluminescence measurements in the infrared. The results show also that in p-type Pb1-xCdxTe and Pb1-xMnxTe mixed crystals an enhancement of thermoelectrical power can be expected.Comment: 10 pages, 13 figures, submitted to Physical Review

    Self-reduction of the native TiO2(110) surface during cooling after thermal annealing - in-operando investigations

    Get PDF
    We investigate the thermal reduction of TiO2 in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells

    Studies of resistance switching effects in metal/YBa2Cu3O7-x interface junctions

    Full text link
    Current-voltage characteristics of planar junctions formed by an epitaxial c-axis oriented YBa2Cu3O7-x thin film micro-bridge and Ag counter-electrode were measured in the temperature range from 4.2 K to 300 K. A hysteretic behavior related to switching of the junction resistance from a high-resistive to a low-resistive state and vice-versa was observed and analyzed in terms of the maximal current bias and temperature dependence. The same effects were observed on a sub-micrometer scale YBa2Cu3O7-x thin film - PtIr point contact junctions using Scanning Tunneling Microscope. These phenomena are discussed within a diffusion model, describing an oxygen vacancy drift in YBa2Cu3O7-x films in the nano-scale vicinity of the junction interface under applied electrical fields.Comment: To be published in Applied Surface Science

    Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    Full text link
    Stable and switchable polarization of ferroelectric materials opens a possibility to electrically control their functional behavior. A particularly promising approach is to employ ferroelectric tunnel junctions where the polarization reversal in a ferroelectric barrier changes the tunneling current across the junction. Here, we demonstrate the reproducible tunneling electroresistance effect using a combination of Piezoresponse Force Microscopy (PFM) and Conducting Atomic Force Microscopy (C-AFM) techniques on nanometer-thick epitaxial BaTiO3 single crystal thin films on SrRuO3 bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by the direct nanoscale visualization and control of polarization and tunneling current in BaTiO3 films. The obtained results show a change in resistance by about two orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in non-volatile memory and logic devices, not involving charge as a state variable.Comment: 18 pages, 4 figure
    corecore