1,000 research outputs found

    Corrigendum to “Cytokinesis and cancer” [FEBS Lett. 584 (2010) 2652–2661]

    Get PDF
    Cytokinesis is the final stage of cell division during which the two daughter cells separate completely. Although less well understood than some of the earlier phases of the cell cycle, recent discoveries have shed light on the mechanisms that orchestrate this process, including cleavage furrow formation, midbody maturation and abscission. One of the reasons why research on cytokinesis has been attracting increasing attention is the concept that failure of this process in mammals is associated with carcinogenesis. In this minireview, we will discuss the possible links between cytokinesis and cancer, and highlight key mechanisms that connect these processes

    Crystal structure and substrate specificity of the 8-oxo-dGTP hydrolase NUDT1 from Arabidopsis thaliana

    Get PDF
    Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures of protein homologues solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a manner distinct to those from other organisms

    Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain

    Get PDF
    p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited

    Analysis of Transaction Logs from National Museums Liverpool

    Get PDF
    The websites of Cultural Heritage institutions attract the full range of users, from professionals to novices, for a variety of tasks. However, many institutions are reporting high bounce rates and therefore seeking ways to better engage users. The analysis of transaction logs can provide insights into users’ searching and navigational behaviours and support engagement strategies. In this paper we present the results from a transaction log analysis of web server logs representing user-system interactions from the seven websites of National Museums Liverpool (NML). In addition, we undertake an exploratory cluster analysis of users to identify potential user groups that emerge from the data. We compare this with previous studies of NML website users

    The Ubiquitous Dermokine Delta Activates Rab5 Function in the Early Endocytic Pathway

    Get PDF
    The expression of the recently identified dermokine (Dmkn) gene leads to four families of proteins with as yet unknown functions. The secreted α, β and γ isoforms share an epidermis-restricted expression pattern, whereas the δ isoform is intracellular and ubiquitous. To get an insight into Dmknδ function, we performed yeast two-hybrid screening and identified the small GTPases Rab5 as partners for Dmknδ. The Rab5 proteins are known to regulate membrane docking and fusion in the early endocytic pathway. GST pull-down assays confirmed the direct interaction between Rab5 and Dmknδ. Transient expression of Dmknδ in HeLa cells led to the formation of punctate structures colocalized with endogenous Rab5 and clathrin, indicating Dmknδ involvement in the early steps of endocytosis. Dmknδ indeed colocalized with transferrin at early stages of endocytosis, but did not modulate its endocytosis or recycling kinetics. We also showed that Dmknδ was able to bind both inactive (GDP-bound) and active (GTP-bound) forms of Rab5 in vitro but preferentially targeted GDP-bound form in HeLa cells. Interestingly, Dmknδ expression rescued the Rab5S34N-mediated inhibition of endosome fusion. Moreover, Dmknδ caused the enlargement of vesicles positive for Rab5 by promoting GTP loading onto the small GTPase. Together our data reveal that Dmknδ activates Rab5 function and thus is involved in the early endosomal trafficking

    HIF1A-Dependent Induction of Alveolar Epithelial PFKFB3 Dampens Acute Lung Injury

    Get PDF
    Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI

    Religion, Partisanship, and Attitudes Toward Science Policy

    Get PDF
    We examine issues involving science which have been contested in recent public debate. These “contested science” issues include human evolution, stem-cell research, and climate change. We find that few respondents evince consistently skeptical attitudes toward science issues, and that religious variables are generally strong predictors of attitudes toward individual issues. Furthermore, and contrary to analyses of elite discourse, partisan identification is not generally predictive of attitudes toward contested scientific issues
    corecore