71 research outputs found

    Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    Get PDF
    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe

    Transventricular Mitral Valvotomy

    No full text

    Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing carboxypeptidase G2.

    No full text
    We have designed a targeted systemic suicide gene therapy that combines the advantages of tumor-selective gene expression, using the human telomerase promoter (hTERT), with the beneficial effects of an oncolytic adenovirus to deliver the gene for the prodrug-activating enzyme carboxypeptidase G2 (CPG2) to tumors. Following delivery of the vector (AdV.hTERT-CPG2) and expression of CPG2 in cancer cells, the prodrug ZD2767P was administered for conversion by CPG2 to a cytotoxic drug. This system is sometimes termed gene-directed enzyme prodrug therapy (GDEPT). Here, we have shown that it is applicable to 10 human colorectal carcinoma cell lines with a direct correlation between viral toxicity and CPG2 production. SW620 xenografts were selected for analysis and were significantly reduced or eradicated after a single administration of AdV.hTERT-CPG2 followed by a prodrug course. The oncolytic effect of adenovirus alone did not result in DNA cross-links or apoptosis, whereas DNA cross-links and apoptosis occurred following prodrug administration, showing the combined beneficial effects of the GDEPT system. The apoptotic regions extended beyond the areas of CPG2 expression in the tumors, indicative of significant bystander effects in vivo. Higher concentrations of vector particles and CPG2 were found in the AdV.hTERT-CPG2 plus prodrug–treated tumors compared with the virus alone, showing an unexpected beneficial and cooperative effect between the vector and GDEPT. This is the first time that a tumor-selective GDEPT vector has been shown to be effective in colorectal carcinoma and that apoptosis and significant bystander effects have been identified as the mechanisms of cytotoxicity within the tumor. [Cancer Res 2007;67(10):4949–55

    The vascular Ca<sup>2+</sup>-sensing receptor regulates blood vessel tone and blood pressure

    Get PDF
    The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive (SM22α)CaSR(Δflox/Δflox) [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca(2+)) concentrations (1-5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca(2+) concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaS

    Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2.

    No full text
    Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2 Hepatocellular carcinoma is the fifth most common cancer worldwide, and there is no effective therapy for unresectable disease. We have developed a targeted systemic therapy for hepatocellular carcinoma. The gene for a foreign enzyme is selectively expressed in the tumor cells and a nontoxic prodrug is then given, which is activated to a potent cytotoxic drug by the tumor-localized enzyme. This approach is termed gene- directed enzyme prodrug therapy (GDEPT). Adenoviruses have been used to target cancer cells, have an intrinsic tropism for liver, and are efficient gene vectors. Oncolytic adenoviruses produce clinical benefits, particularly in combination with conventional anticancer agents and are well tolerated. We rationalized that such adenoviruses, if their expression were restricted to telomerase-positive cancer cells, would make excellent gene vectors for GDEPT therapy of hepatocellular carcinoma. Here we use an oncolytic adenovirus to deliver the prodrug-activating enzyme carboxypeptidase G2 (CPG2) to tumors in a single systemic administration. The adenovirus replicated and produced high levels of CPG2 in two different hepatocellular carcinoma xenografts (Hep3B and HepG2) but not other tissues. GDEPT enhanced the adenovirus-alone therapy to elicit tumor regressions in the hepatocellular carcinoma models. This is the first time that CPG2 has been targeted and expressed intracellularly to effect significant therapy, showing that the combined approach holds enormous potential as a tumor-selective therapy for the systemic treatment of hepatocellular carcinoma

    Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney

    No full text
    The calcium sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium (Ca2+) concentration. The receptor is highly expressed in the kidney; however, intra-renal and intra-species distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney in order to relate this to its proposed physiological roles. In this study we determined CaSR expression in mouse, rat and human kidney using in situ hybridisation, immunohistochemistry (using eight different commercially available and custom-made antibodies) and proximity ligation assays. Both in situ hybridisation and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intra-renal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ
    corecore