2,158 research outputs found
Near-horizon modes and self-adjoint extensions of the Schroedinger operator
We investigate the dynamics of scalar fields in the near-horizon exterior
region of a Schwarzschild black hole. We show that low-energy modes are
typically long-living and might be considered as being confined near the black
hole horizon. Such dynamics are effectively governed by a Schroedinger operator
with infinitely many self-adjoint extensions parameterized by , a
situation closely resembling the case of an ordinary free particle moving on a
semiaxis. Even though these different self-adjoint extensions lead to
equivalent scattering and thermal processes, a comparison with a simplified
model suggests a physical prescription to chose the pertinent self-adjoint
extensions. However, since all extensions are in principle physically
equivalent, they might be considered in equal footing for statistical analyses
of near-horizon modes around black holes. Analogous results hold for any
non-extremal, spherically symmetric, asymptotically flat black hole.Comment: 10 pages, 1 fig, contribution submitted to the volume "Classical and
Quantum Physics: Geometry, Dynamics and Control. (60 Years Alberto Ibort
Fest)" Springer (2018
Spinless Matter in Transposed-Equi-Affine Theory of Gravity
We derive and discus the equations of motion for spinless matter:
relativistic spinless scalar fields, particles and fluids in the recently
proposed by A. Saa model of gravity with covariantly constant volume with
respect to the transposed connection in Einstein-Cartan spaces.
A new interpretation of this theory as a theory with variable Plank
"constant" is suggested.
We show that the consistency of the semiclassical limit of the wave equation
and classical motion dictates a new definite universal interaction of torsion
with massive fields.Comment: 29 pages, latex, no figures. New Section on semiclassical limit of
wave equation added; old references rearranged; new references, remarks,
comments, and acknowledgments added; typos correcte
On the renormalization of the electroweak chiral Lagrangian with a Higgs
We consider the scalar sector of the effective non-linear electroweak
Lagrangian with a light "Higgs" particle, up to four derivatives in the chiral
expansion. The complete off-shell renormalization procedure is implemented,
including one loop corrections stemming from the leading two-derivative terms,
for finite Higgs mass. This determines the complete set of independent chiral
invariant scalar counterterms required for consistency; these include bosonic
operators often disregarded. Furthermore, new counterterms involving the Higgs
particle which are apparently chiral non-invariant are identified in the
perturbative analysis. A novel general parametrization of the pseudoescalar
field redefinitions is proposed, which reduces to the various usual ones for
specific values of its parameter; the non-local field redefinitions reabsorbing
all chiral non-invariant counterterms are then explicitly determined. The
physical results translate into renormalization group equations which may be
useful when comparing future Higgs data at different energies
Gravitational wave recoil in Robinson-Trautman spacetimes
We consider the gravitational recoil due to non-reflection-symmetric
gravitational wave emission in the context of axisymmetric Robinson-Trautman
spacetimes. We show that regular initial data evolve generically into a final
configuration corresponding to a Schwarzschild black-hole moving with constant
speed. For the case of (reflection-)symmetric initial configurations, the mass
of the remnant black-hole and the total energy radiated away are completely
determined by the initial data, allowing us to obtain analytical expressions
for some recent numerical results that have been appeared in the literature.
Moreover, by using the Galerkin spectral method to analyze the non-linear
regime of the Robinson-Trautman equations, we show that the recoil velocity can
be estimated with good accuracy from some asymmetry measures (namely the first
odd moments) of the initial data. The extension for the non-axisymmetric case
and the implications of our results for realistic situations involving head-on
collision of two black holes are also discussed.Comment: 9 pages, 6 figures, final version to appear in PR
Stability aspects of relativistic thin magnetized disks
CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA E DESENVOLVIMENTO DO ESTADO DE SÃO PAULOWe adapt the well-known "displace, cut and reflect" method to construct exact solutions of the Einstein-Maxwell equations corresponding to infinitesimally thin disks of matter endowed with dipole magnetic fields, which are entirely supported by surface polar currents on the disk. Our starting point is the Gutsunaev-Manko axisymmetric solution describing massive magnetic dipoles in general relativity, from which we obtain a continuous three-parameter family of asymptotically flat static magnetized disks with finite mass and energy. For strong magnetic fields, the disk surface density profile resembles some well-known self-gravitating ringlike structures. We show that many of these solutions can be indeed stable and, hence, they could be in principle useful for the study of the abundant astrophysical situations involving disks of matter and magnetic fields9512110CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA E DESENVOLVIMENTO DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA E DESENVOLVIMENTO DO ESTADO DE SÃO PAULOsem informaçãoE-26/200.279/2015 , 2013/09357-
Quantum dynamics of non-relativistic particles and isometric embeddings
It is considered, in the framework of constrained systems, the quantum
dynamics of non-relativistic particles moving on a d-dimensional Riemannian
manifold M isometrically embedded in . This generalizes recent
investigations where M has been assumed to be a hypersurface of . We
show, contrary to recent claims, that constrained systems theory does not
contribute to the elimination of the ambiguities present in the canonical and
path integral formulations of the problem. These discrepancies with recent
works are discussed.Comment: Revtex, 14 page
Neutron star in presence of torsion-dilaton field
We develop the general theory of stars in Saa's model of gravity with
propagating torsion and study the basic stationary state of neutron star. Our
numerical results show that the torsion force decreases the role of the gravity
in the star configuration leading to significant changes in the neutron star
masses depending on the equation of state of star matter. The inconsistency of
the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments is
discussed.Comment: 29 pages, latex, 24 figures, final version. Added: 1)comments on
different possible mass definitions; 2)new sections: a)the inconsistency of
the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments;
b)stability analysis via catastrophe theory; 3)new figers added and some
figures replaced. 4)new reference
Quantum effects and superquintessence in the new age of precision cosmology
Recent observations of Type Ia supernova at high redshifts establish that the
dark energy component of the universe has (a probably constant) ratio between
pressure and energy density . The
conventional quintessence models for dark energy are restricted to the range
, with the cosmological constant corresponding to .
Conformally coupled quintessence models are the simplest ones compatible with
the marginally allowed superaccelerated regime (). However, they are
known to be plagued with anisotropic singularities.
We argue here that the extension of the classical approach to the
semiclassical one, with the inclusion of quantum counterterms necessary to
ensure the renormalization, can eliminate the anisotropic singularities
preserving the isotropic behavior of conformally coupled superquintessence
models. Hence, besides of having other interesting properties, they are
consistent candidates to describe the superaccelerated phases of the universe
compatible with the present experimental data.Comment: 7 pages. Essay selected for "Honorable Mention" in the 2004 Awards
for Essays on Gravitation, Gravity Research Foundatio
A note on a third order curvature invariant in static spacetimes
We consider here the third order curvature invariant
in static spacetimes
for which is conformally flat. We evaluate
explicitly the invariant for the -dimensional Majumdar-Papapetrou multi
black-holes solution, confirming that does indeed vanish on the event
horizons of such black-holes. Our calculations show, however, that solely the
vanishing of is not sufficient to locate an event horizon in
non-spherically symmetric spacetimes. We discuss also some tidal effects
associated to the invariant .Comment: 5 pages, 3 figures. Extra material available at
http://vigo.ime.unicamp.br/in
- …