41 research outputs found

    Stress Balance in Synthetic Serpentinized Peridotites Deformed at Subduction Zone Pressures

    Get PDF
    Weak serpentine minerals affect the mechanical behavior of serpentinized peridotites at depth, and may play a significant role in deformation localization within subduction zones, at local or regional scale. Mixtures of olivine with 5, 10, 20 and 50 vol. % fraction of antigorite, proxies for serpentinized peridotites, were deformed in axial shortening geometry under high pressures (ca. 2–5 GPa) and moderate temperatures (ca. 350°C), with in situ stress and strain measurements using synchrotron X-rays. We evaluate the average partitioning of stresses at the grains scale within each phase (mineral) of the aggregate and compare with pure olivine aggregates in the same conditions. The in situ stress balance is different between low antigorite contents up to 10 vol. %, and higher contents above 20 vol. %. Microstructure and stress levels suggest the deformation mechanisms under these experimental conditions are akin to (semi)brittle and frictional processes. Unlike when close to dehydration temperatures, hardening of the aggregate is observed at low serpentine fractions, due to an increase in local stress concentrations. Below and above the 10–20 vol. % threshold, the stress state in the aggregate corresponds to friction laws already measured for pure olivine aggregates and pure antigorite aggregates respectively. As expected, the behavior of the two-phase aggregate does not evolve as calculated from simple iso-stress or iso-strain bounds, and calls for more advanced physical models of two-phase mixtures

    Earth's oldest mantle fabrics indicate Eoarchaean subduction

    Get PDF
    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ~3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics

    Thermal weakening friction during seismic slip experiments and models with heat sources and sinks

    Get PDF
    Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral)

    Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions

    Full text link

    Pressure effect on forsterite dislocation slip systems: Implications for upper-mantle LPO and low viscosity zone

    No full text
    In order to better constrained the effect of pressure (P) on olivine dislocationslip-system activities, deformation experiments were carried out in a Deformation-DIA apparatus (D-DIA) on pure forsterite (Fo100) single crystals, at P â©Ÿ 5.7 GPa, temperature T ∌ 1675 K, differential stress σ < 350 MPa and in water-poor conditions. Constant σ and specimen strain rates () were monitored in situ by synchrotron X-ray diffraction and radiography, respectively. Two compression directions were tested, promoting either [1 0 0] slip or [0 0 1] slip in (0 1 0) crystallographic plane. Comparison of the obtained high-P rheological data with room-P data previously reported by Darot and Gueguen (1981) shows that [1 0 0] slip is strongly inhibited by pressure while [0 0 1] slip is virtually P insensitive. This translates in creep power laws into a high activation volume for [1 0 0](0 1 0) slip system, and for [0 0 1](0 1 0) slip system. Using these laws along geotherms at natural σ condition shows that the [1 0 0] slip/[0 0 1] slip transition may occur at ∌200 km depth in the uppermantle, and be responsible for the observed lattice preferred orientation (LPO) transition. A rheological law for polycrystalline forsterite is deduced from the single-crystal rheological laws, assuming that individual grains are randomly oriented in the aggregate. Applying the aggregate law within a 2D geodynamic model of upper-mantle couette flow suggests that the pressure dependence of olivine dislocation-slip activities may partly explain the lowviscosityzone (LVZ) observed underneath oceanic plate

    High-temperature deformation of enstatite aggregates

    No full text
    International audienceSynthesized polycrystalline enstatite samples were deformed in a Paterson gas-medium apparatus at 1200-1300°C, oxygen fugacity buffered at Ni/NiO, and confining pressures of 300 MPa (protoenstatite field) or 450 MPa (orthoenstatite field). At both confining pressures, the mechanical data display a progressive increase of the stress exponent from n = 1 to n 3 with increasing differential stress, suggesting a transition from diffusional to dislocation creep. Nonlinear least squares fits to the high-stress data yielded dislocation creep flow laws with a stress exponent of 3 and activation energies of 600 and 720 kJ/mol for orthoenstatite and protoenstatite, respectively. Deformed samples were analyzed using optical microscopy and scanning and transmission electron microscopy. Microstructures show undulatory extinction and kink bands, evidence of dislocation processes. Crystallographic preferred orientations measured by electron backscatter diffraction are axisymmetric and indicate preferential slip on (100)[001]. Most deformed grains comprise an interlayering of orthoenstatite and clinoenstatite lamellae. While many lamellae may have formed during quenching from run conditions, those in samples deformed in the orthoenstatite field are often bordered by partial [001] dislocations, suggesting transformation due to glide of partial [001] dislocations in (100) planes. Comparison of our orthoenstatite creep law with those for dislocation creep of olivine indicates that orthoenstatite deforms about a factor of 2 slower than olivine at our experimental conditions. However, as orthoenstatite has a higher activation energy and smaller stress exponent than olivine, this strength difference is likely smaller at the higher temperatures and lower stresses expected in much of the upper mantle
    corecore