1,066 research outputs found
Deterministic and stochastic study for a microscopic angiogenesis model: applications to the Lewis lung carcinoma
Angiogenesis modelling is an important tool to understand the underlying mechanisms yielding tumour growth. Nevertheless, there is usually a gap between models and experimental data. We propose a model based on the intrinsic microscopic reactions defining the angiogenesis process to link experimental data with previous macroscopic models. The microscopic characterisation can describe the macroscopic behaviour of the tumour, which stability analysis reveals a set of predicted tumour states involving different morphologies. Additionally, the microscopic description also gives a framework to study the intrinsic stochasticity of the reactive system through the resulting Langevin equation. To follow the goal of the paper, we use available experimental information on the Lewis lung carcinoma to infer meaningful parameters for the model that are able to describe the different stages of the tumour growth. Finally we explore the predictive capabilities of the fitted model by showing that fluctuations are determinant for the survival of the tumour during the first week and that available treatments can give raise to new stable tumour dormant states with a reduced vascular network
Stretching magnetism with an electric field in a nitride semiconductor
By direct magnetization measurements, performed employing a new detection
scheme, we demonstrate an electrical control of magnetization in wurtzite
(Ga,Mn)N. In this dilute magnetic insulator the Fermi energy is pinned by Mn
ions in the mid-gap region, and the Mn3+ ions show strong single-ion
anisotropy. We establish that (Ga,Mn)N sustains an electric field up to at
least 5 MV/cm, indicating that Mn doping turns GaN into a worthwhile
semi-insulating material. Under these conditions, the magnetoelectric coupling
may be driven by the inverse piezoelectric effect that stretches the elementary
cell along the c axis and, thus, affects the magnitude of magnetic anisotropy.
We develop a corresponding theory and show that it describes the experimentally
determined dependence of magnetization on the electric field quantitatively
with no adjustable parameters as a function of the magnetic field and
temperature. In this way, our work bridges two research domains developed so
far independently: piezoelectricity of wurtzite semiconductors and electrical
control of magnetization in hybrid and composite magnetic structures containing
piezoelectric components.Comment: 11 pages, 10 figures, version after revisio
An exploration of the experiences and utility of functional electrical stimulation for foot drop in people with multiple sclerosis
Purpose: Functional electrical stimulation (FES) is effective in improving walking in people with multiple sclerosis (MS) with foot drop. There is limited research exploring people’s experiences of using this device. This study aims to explore the utility, efficacy, acceptability, and impact on daily life of the device in people with MS.
Methods: An interpretative phenomenological approach was employed. Ten participants who had used FES for 12 months were interviewed. Transcripts were analysed, and emergent themes identified.
Results: Nine participants continued to use the device. Three relevant super-ordinate themes were identified; impact of functional electrical stimulation, sticking with functional electrical stimulation, and autonomy and control. Participants reported challenges using the device; however, all reported positive physical and psychological benefits. Intrinsic and external influences such as; access to professional help, the influence of others, an individual’s ability to adapt, and experiences using the device, influenced their decisions to continue with the device. A thematic model of these factors was developed.
Conclusions: This study has contributed to our understanding of people with MS experiences of using the device and will help inform prescribing decisions and support the continued, appropriate use of FES over the longer term
In-plane uniaxial anisotropy rotations in (Ga,Mn)As thin films
We show, by SQUID magnetometry, that in (Ga,Mn)As films the in-plane uniaxial
magnetic easy axis is consistently associated with particular crystallographic
directions and that it can be rotated from the [-110] direction to the [110]
direction by low temperature annealing. We show that this behavior is
hole-density-dependent and does not originate from surface anisotropy. The
presence of uniaxial anisotropy as well its dependence on the
hole-concentration and temperature can be explained in terms of the p-d Zener
model of the ferromagnetism assuming a small trigonal distortion.Comment: 4 pages, 6 Postscript figures, uses revtex
Measurement of psychological entitlement in 28 countries
This article presents the cross-cultural validation of the Entitlement Attitudes Questionnaire, a tool designed to measure three facets of psychological entitlement: active, passive, and revenge entitlement. Active entitlement was defined as the tendency to protect individual rights based on self-worthiness. Passive entitlement was defined as the belief in obligations to and expectations toward other people and institutions for the fulfillment of the individual’s needs. Revenge entitlement was defined as the tendency to protect one’s individual rights when violated by others and the tendency to reciprocate insults. The 15-item EAQ was validated in a series of three studies: the first one on a general Polish sample (N = 1,900), the second one on a sample of Polish students (N = 199), and the third one on student samples from 28 countries (N = 5,979). A three-factor solution was confirmed across all samples. Examination of measurement equivalence indicated partial metric invariance of EAQ for all national samples. Discriminant and convergent validity of the EAQ was also confirmed
Recommended from our members
Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis.
BACKGROUND: Amiselimod, an oral selective sphingosine-1-phosphate 1 receptor modulator, suppressed disease activity dose-dependently without clinically relevant bradyarrhythmia in a 24-week phase 2, placebo-controlled study in relapsing-remitting multiple sclerosis. OBJECTIVE: To assess safety and efficacy of amiselimod over 96 weeks. METHODS: After completing the core study, patients on amiselimod continued at the same dose, whereas those on placebo were randomised 1:1:1 to amiselimod 0.1, 0.2 or 0.4 mg for another 72 weeks. Most patients receiving 0.1 mg were re-randomised to 0.2 or 0.4 mg upon availability of the core study results. RESULTS: Of 415 patients randomised in the core study, 367 (88.4%) entered and 322 (77.6%) completed the extension. One or more adverse events were reported in 303 (82.6%) of 367 patients: 'headache', 'lymphocyte count decreased', 'nasopharyngitis' and 'MS relapse' were most common (14.7%-16.9%). No serious opportunistic infection, macular oedema or malignancy was reported and no bradyarrhythmia of clinical concern was observed by Holter or 12-lead electrocardiogram. The dose-dependent effect of amiselimod on clinical and magnetic resonance imaging-related outcomes from the core study was sustained in those continuing on amiselimod and similarly observed after switching to active drug. CONCLUSION: For up to 2 years of treatment, amiselimod was well tolerated and dose-dependently effective in controlling disease activity
LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies
Accepted for publication in Astronomy and AstrophysicsAims. The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Methods. Using the measured 150 MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies characterised by different morphology and star formation rate. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Results. Our galaxies' spectra are generally flatter at lower compared to higher frequencies: the median spectral index α low measured between ≈ 50 MHz and 1.5 GHz is -0.57 ± 0.01 while the high-frequency one α high, calculated between 1.3 GHz and 5 GHz, is -0.77 ± 0.03. As there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990, ApJ, 352, 30). According to our modelled radio maps for M 51-like galaxies, the free-free absorption effects can be seen only below 30 MHz and in the global spectra just below 20 MHz, while in the spectra of starburst galaxies, like M 82, the flattening due to absorption is instead visible up to higher frequencies of about 150 MHz. Starbursts are however scarce in the local Universe, in accordance with the weak spectral curvature seen in the galaxies of our sample. Locally, within galactic disks, the absorption effects are distinctly visible in M 51-like galaxies as spectral flattening around 100-200 MHz in the face-on objects, and as turnovers in the edge-on ones, while in M 82-like galaxies there are strong turnovers at frequencies above 700 MHz, regardless of viewing angle. Conclusions. Our modelling of galaxy spectra suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects. We predict much stronger effects of thermal absorption in more distant galaxies with high star formation rates. Some influence exerted by the Milky Way's foreground on the spectra of all external galaxies is also expected at very low frequencies.Peer reviewedFinal Accepted Versio
Reception Tests of the Cryogenic Distribution line for the Large Hadron Collider
The paper describes the thermo-mechanical validation of the first sector of cryogenic distribution line (QRL) [1]. The design of the line is recalled and the test methodology presented together with the main results of the reception test at cryogenic temperature
The ArDM experiment
The aim of the ArDM project is the development and operation of a one ton
double-phase liquid argon detector for direct Dark Matter searches. The
detector measures both the scintillation light and the ionization charge from
ionizing radiation using two independent readout systems. This paper briefly
describes the detector concept and presents preliminary results from the ArDM
R&D program, including a 3 l prototype developed to test the charge readout
system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta
Physica Polonica
Mesoscopic scale modeling of concrete under triaxial loading using X-ray tomographic images
This paper focuses on the discrete modeling of triaxial behaviour of concrete. The originality of this work comes from two points. The first one concerns the predictive feature of the model developed for simulating the response of concrete specimens; the behaviour of mortar, rock, and their interaction being identified a priori or by means of experimental tests on the mortar and the rock. The second originality relates to the construction method of the discrete element assembly based on the 3D segmentation of tomographic images. Such a method allows modeling of concrete at the mesoscopic scale with an internal structure similar to the one of the concrete tested experimentally. The comparisons between numerical and
experimental results show the model is capable to reproduce the triaxial behavior of concrete for confining pressure varying from 0 to 650 MPa
- …
