39 research outputs found
Finitely generated free Heyting algebras via Birkhoff duality and coalgebra
Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and
thus the free algebras can be obtained by a direct limit process. Dually, the
final coalgebras can be obtained by an inverse limit process. In order to
explore the limits of this method we look at Heyting algebras which have mixed
rank 0-1 axiomatizations. We will see that Heyting algebras are special in that
they are almost rank 1 axiomatized and can be handled by a slight variant of
the rank 1 coalgebraic methods
Interaction and observation, categorically
This paper proposes to use dialgebras to specify the semantics of interactive
systems in a natural way. Dialgebras are a conservative extension of
coalgebras. In this categorical model, from the point of view that we provide,
the notions of observation and interaction are separate features. This is
useful, for example, in the specification of process equivalences, which are
obtained as kernels of the homomorphisms of dialgebras. As an example we
present the asynchronous semantics of the CCS.Comment: In Proceedings ICE 2011, arXiv:1108.014
The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells (vol 17, pg 3487, 2008)
no abstract availabl
Seizure prediction : ready for a new era
Acknowledgements: The authors acknowledge colleagues in the international seizure prediction group for valuable discussions. L.K. acknowledges funding support from the National Health and Medical Research Council (APP1130468) and the James S. McDonnell Foundation (220020419) and acknowledges the contribution of Dean R. Freestone at the University of Melbourne, Australia, to the creation of Fig. 3.Peer reviewedPostprin
Chemistry and biology of the potent endotoxin from a Burkholderia dolosa clinical isolate from a cystic fibrosis patient
This is the first report of the chemical and biological properties of the lipooligosaccharide (LOS) endotoxin isolated from Burkholderia dolosa IST4208, an isolate recovered from a cystic fibrosis (CF) patient in a Portuguese CF center. B. dolosa is a member of the Burkholderia cepacia complex, a group of closely related species that are highly problematic and opportunistic pathogens in CF. B. dolosa infection leads to accelerated loss of lung function and decreased survival. The structural determination of its endotoxin was achieved using a combination of chemistry and spectroscopy, and has revealed a novel endotoxin structure. The purified LOS was tested for its immunostimulatory activity on human HEK 293 cells expressing TLR-4, MD-2, and CD-14. In these assays, the LOS showed strong proinflammatory activity
β-Amyloid Monomers Are Neuroprotective
The 42-aa-long beta-amyloid protein-A beta(1-42)-is thought to play a central role in the pathogenesis of Alzheimer's disease (AD) (Walsh and Selkoe, 2007). Data from AD brain (Shankar et al., 2008), transgenic APP (amyloid precursor protein)-overexpressing mice (Lesne et al., 2006), and neuronal cultures treated with synthetic A beta peptides (Lambert et al., 1998) indicate that self-association of A beta(1-42) monomers into soluble oligomers is required for neurotoxicity. The function of monomeric A beta(1-42) is unknown. The evidence that A beta(1-42) is present in the brain and CSF of normal individuals suggests that the peptide is physiologically active (Shoji, 2002). Here we show that synthetic A beta(1-42) monomers support the survival of developing neurons under conditions of trophic deprivation and protect mature neurons against excitotoxic death, a process that contributes to the overall neurodegeneration associated with AD. The neuroprotective action of A beta(1-42) monomers was mediated by the activation of the PI-3-K (phosphatidylinositol-3-kinase) pathway, and involved the stimulation of IGF-1 (insulin-like growth factor-1) receptors and/or other receptors of the insulin superfamily. Interestingly, monomers of A beta(1-42) carrying the Arctic mutation (E22G) associated with familiar AD (Nilsberth et al., 2001) were not neuroprotective. We suggest that pathological aggregation of A beta(1-42) may also cause neurodegeneration by depriving neurons of the protective activity of A beta(1-42) monomers. This "loss-of-function" hypothesis of neuronal death should be taken into consideration when designing therapies aimed at reducing A beta burden