5,280 research outputs found

    On The Evolution of Magnetic White Dwarfs

    Get PDF
    We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have then employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B > 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection owing to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic degenerates.Comment: 11 pages, 12 figures, accepted for publication in the Astrophysical Journa

    On the effect of oscillatory phenomena on Stokes inversion results

    Full text link
    Stokes inversion codes are crucial in returning properties of the solar atmosphere, such as temperature and magnetic field strength. However, the success of such algorithms to return reliable values can be hindered by the presence of oscillatory phenomena within magnetic wave guides. Returning accurate parameters is crucial to both magnetohydrodynamics studies and solar physics in general. Here, we employ a simulation featuring propagating MHD waves within a flux tube with a known driver and atmospheric parameters. We invert the Stokes profiles for the 6301 \unicode{0xc5} and 6302 \unicode{0xc5} line pair emergent from the simulations using the well-known Stokes Inversions from Response functions (SIR) code to see if the atmospheric parameters can be returned for typical spatial resolutions at ground-based observatories. The inversions return synthetic spectra comparable to the original input spectra, even with asymmetries introduced in the spectra from wave propagation in the atmosphere. The output models from the inversions match closely to the simulations in temperature, line-of-sight magnetic field and line-of-sight velocity within typical formation heights of the inverted lines. Deviations from the simulations are seen away from these height regions. The inversion results are less accurate during passage of the waves within the line formation region. The original wave period could be recovered from the atmosphere output by the inversions, with empirical mode decomposition performing better than the wavelet approach in this task.Comment: Accepted for publication in Phil. Trans. R. Soc. A, 20 pages, 4 figure

    The Strange Star Surface: A Crust with Nuggets

    Full text link
    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient ( 1026~10^{26} g/cm4^4) and large electric fields at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.Comment: 4 pages, 2 figure

    Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes

    Get PDF
    Resonance Raman scattering is used to determine the radial breathing mode (RBM) frequency (ωRBM) dependence on tube diameter (dt) for single-wall carbon nanotubes (SWNTs). We establish experimentally the ωRBM=227.0/dt as the fundamental relation for pristine SWNTs. All the other RBM values found in the literature can be explained by an upshift in frequency due mostly to van der Waals interaction between SWNTs and environment

    Hubbard-U calculations for Cu from first-principles Wannier functions

    Full text link
    We present first-principles calculations of optimally localized Wannier functions for Cu and use these for an ab-initio determination of Hubbard (Coulomb) matrix elements. We use a standard linearized muffin-tin orbital calculation in the atomic-sphere approximation (LMTO-ASA) to calculate Bloch functions, and from these determine maximally localized Wannier functions using a method proposed by Marzari and Vanderbilt. The resulting functions were highly localized, with greater than 89% of the norm of the function within the central site for the occupied Wannier states. Two methods for calculating Coulomb matrix elements from Wannier functions are presented and applied to fcc Cu. For the unscreened on-site Hubbard UU for the Cu 3d-bands we have obtained about 25eV. These results are also compared with results obtained from a constrained local-density approximation (LDA) calculation.Comment: 13 pages, 8 figures, 5 table

    Ab Initio Calculation of Crystalline Electric Fields and Kondo Temperatures in Ce-Compounds

    Full text link
    We have calculated the band-ff hybridizations for Cex_xLa1−x_{1-x}M3_3 compounds (x=1x=1 and x→0x\rightarrow 0; M=Pb, In, Sn, Pd) within the local density approximation and fed this into a non-crossing approximation for the Anderson impurity model applied to both dilute and concentrated limits. Our calculations produce crystalline electric field splittings and Kondo temperatures with trends in good agreement with experiment and demonstrate the need for detailed electronic structure information on hybridization to describe the diverse behaviors of these Ce compounds.Comment: 13 pages(RevTeX), 3 Postscript figure

    Solar constraints on new couplings between electromagnetism and gravity

    Get PDF
    The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k:k(2)\u3c (2.5 km)(2)
    • …
    corecore