1,380 research outputs found
Further developments in the conflation of CFD and building simulation
To provide practitioners with the means to tackle problems related to poor indoor environments, building simulation and computational fluid dynamics can usefully be integrated within a single computational framework. This paper describes the outcomes from a research project sponsored by the European Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model and describes the method used to integrate the thermal and flow domains
Experimental and numerical study of local mean age of air
This paper presents the results from the experimental and numerical study of a room with mixing ventilation, focused on the local mean age of air (LMA). The measurements were performed using the tracer gas concentration decay method. The numerical predictions were obtained from the computational fluid dynamics (CFD) module of the latest version of the ESP-r software
All-dielectric free-electron-driven holographic light sources
It has recently been shown that holographically nanostructured surfaces can
be employed to control the wavefront of (predominantly plasmonic)
optical-frequency light emission generated by the injection of medium-energy
electrons into a gold surface. Here we apply the concept to manipulation of the
spatial distribution of transition radiation emission from
high-refractive-index dielectric/semiconductor target materials, finding that
concomitant incoherent luminescent emission at the same wavelength is
unperturbed by holographic surface-relief structures, and thereby deriving a
means of discriminating between the two emission components.Comment: 5 pages, 3 figure
Holographic free-electron light source
Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing
Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O
We investigate the seasonal variability in freshwater inputs to the Marguerite Bay region (Western Antarctic Peninsula) using a time series of oxygen isotopes in seawater from samples collected in the upper mixed layer of the ocean during 2002 and 2003. We find that meteoric water, mostly in the form of glacial ice melt, is the dominant freshwater source, accounting for up to 5% of the near-surface ocean during the austral summer. Sea ice melt accounts for a much smaller percentage, even during the summer (maximum around 1%). The seasonality in meteoric water input to the ocean (around 2% of the near-surface ocean) is not dissimilar to that of sea ice melt (around 2% in 2002 and 1% in 2003), contradicting the assumption that sea ice processes dominate the seasonal evolution of the physical ocean environment close to the Antarctic continent. Three full-depth profiles of oxygen isotopes collected in successive Decembers (2001, 2002 and 2003) indicate that around 4 m of meteoric water is present in the water column at this time of year, and around 1 m of sea ice formed from this same water column. The predominance of glacial melt is significant, since it is known to be an important factor in the operation of the ecosystem, for example by providing a source of nutrients and modifying the physical environment to control the spatial extent and magnitude of phytoplankton blooms.
The Western Antarctic Peninsula is undergoing a very rapid change in climate, with increasing ocean and air temperatures, retreating glaciers and increases in precipitation associated with changes in atmospheric circulation. As climate change continues, we expect meteoric water inputs to the adjacent ocean to rise further. Sea ice in this sector of the Antarctic has shown a climatic decrease, thus we expect a reduction in oceanic sea ice melt fractions if this change continues. Continued monitoring of the oceanic freshwater budget at the western Peninsula is needed to track these changes as they occur, and to better understand their ecological consequences
In and around: identifying predictors of theft within and near to major mass underground transit systems
This article identifies factors that encourage or reduce pick-pocketing at underground rail stations through a case study analysis of the London Underground. Negative binomial Poisson regression models found predictor variables of pick-pocketing selected from the internal characteristics of stations and features of their nearby surroundings. Factors that increased risk were those associated with greater congestion inside stations including lifts, waiting rooms and fewer platforms; and increased levels of accessibility near stations, more paths and roads. Features that reduced risk were those likely to encourage detection and guardianship; stations with more personal validators, staffing levels and shop rentals; and the presence of more domestic buildings nearby. Station type was also influential; those that were ‘attractors’ of crime and those frequently used by tourists were at greater risk. The findings suggest a transmission of theft risk between the internal settings of underground stations and their nearby surroundings
How Design Features in Digital Math Games Support Learning and Mathematics Connections
Current research shows that digital games can significantly enhance children’s learning. The purpose of this study was to examine how design features in 12 digital math games influenced children’s learning. The participants in this study were 193 children in Grades 2 through 6 (ages 8-12). During clinical interviews, children in the study completed pre-tests, interacted with digital math games, responded to questions about the digital math games, and completed post-tests. We recorded the interactions using two video perspectives that recorded children’s gameplay and responses to interviewers. We employed mixed methods to analyze the data and identify salient patterns in children’s experiences with the digital math games. The analysis revealed significant gains for 9 of the 12 digital games and most children were aware of the design features in the games. There were eight prominent categories of design features in the video data that supported learning and mathematics connections. Six categories focused on how the design features supported learning in the digital games. These categories included: accuracy feedback, unlimited/multiple attempts, information tutorials and hints, focused constraint, progressive levels, and game efficiency. Two categories were more specific to embodied cognition and action with the mathematics, and focused on how design features promoted mathematics connections. These categories included: linked representations and linked physical actions. The digital games in this study that did not include linked representations and opportunities for linked physical actions as design features did not produce significant gains. These results suggest the key role of mathematics-specific design features in the design of digital math games
- …