69 research outputs found

    Field line distribution of density at \u3ci\u3eL\u3c/i\u3e=4.8 inferred from observations by CLUSTER

    Get PDF
    For two events observed by the CLUSTER space- craft, the field line distribution of mass density ρ was inferred from Alfve ́n wave harmonic frequencies and compared to the electron density ne from plasma wave data and the oxy- gen density nO+ from the ion composition experiment. In one case, the average ion mass Mâ‰ĄÏ/ne was about 5amu (28 October 2002), while in the other it was about 3 amu (10 September 2002). Both events occurred when the CLUSTER 1 (C1) spacecraft was in the plasmatrough. Nevertheless, the electron density ne was significantly lower for the first event (ne =8 cm−3 ) than for the second event (ne =22 cm−3 ), and this seems to be the main difference leading to a dif- ferent value of M. For the first event (28 October 2002), we were able to measure the Alfve ́n wave frequencies for eight harmonics with unprecedented precision, so that the er- ror in the inferred mass density is probably dominated by factors other than the uncertainty in frequency (e.g., mag- netic field model and theoretical wave equation). This field line distribution (at L=4.8) was very flat for magnetic lati- tude |MLAT|20◩ but very steeply increasing with respect to |MLAT| for |MLAT|40◩. The total variation in ρ was about four orders of magnitude, with values at large |MLAT| roughly consistent with ionospheric values. For the second event (10 September 2002), there was a small local maxi- mum in mass density near the magnetic equator. The in- ferred mass density decreases to a minimum 23% lower than the equatorial value at |MLAT|=15.5◩, and then steeply in- creases as one moves along the field line toward the iono- sphere. For this event we were also able to examine the spa- tial dependence of the electron density using measurements of ne from all four CLUSTER spacecraft. Our analysis in- dicates that the density varies with L at L∌5 roughly like L−4, and that ne is also locally peaked at the magnetic equa- tor, but with a smaller peak. The value of ne reaches a den- sity minimum about 6% lower than the equatorial value at |MLAT|=12.5◩, and then increases steeply at larger values of |MLAT|. This is to our knowledge the first evidence for a local peak in bulk electron density at the magnetic equa- tor. Our results show that magnetoseismology can be a useful technique to determine the field line distribution of the mass density for CLUSTER at perigee and that the distribution of electron density can also be inferred from measurements by multiple spacecraft

    Modulation of NTC frequencies by Pc5 ULF pulsations : experimental test of the generation mechanism and magnetoseismology of the emitting surface

    Get PDF
    Nonthermal continuum (NTC) radiation is believed to be emitted by the conversion of an electrostatic wave into an electromagnetic one, which takes place at the Earth's magnetic equator. It is generally accepted that the frequency of the electrostatic wave at the source meets a local characteristic frequency placed in between two multiples of the electron cyclotron frequency, fce, which results in emission of a narrow band frequency element. In an event on 14 August 2003, we compare oscillations of the central frequency of distinct NTC frequency elements observed from Cluster orbiting near perigee, with simultaneous Pc5 Ultra Low Frequency (ULF) pulsations in the magnetic field observed from the same platform. The latter magnetic perturbations are interpreted as magnetohydrodynamic poloidal waves, where fundamental and second harmonic modes coexist. The NTC oscillation and the fundamental wave have similar periods, but are phase shifted by a quarter of period. From the correlation between both signals, and the proximity of the NTC source (localized via triangulation) with Cluster, we infer that the poloidal perturbations are spatially uniform between the source and the satellites. From the phase shift between signals, we conclude that the electrostatic wave which converts into NTC is mainly governed by the plasma density, affected by movements of the magnetic field lines. Furthermore, we demonstrate that the observations can be used to perform a magnetoseismology of the emitting surface. The results show a steepening of the plasmapause density profile near the satellites, which can be responsible for the generation of NTC emission

    A quantitative test of Jones NTC beaming theory using CLUSTER constellation

    Get PDF
    Non-thermal continuum (NTC) radiation is, with auroral kilometric radiation (AKR), one of the two electromagnetic emissions generated within the Earth's magnetosphere and radiated into space. The location of the source of NTC has been sought for several decades, with only limited success. The constellation formed by the four CLUSTER spacecraft provides the possibility of triangulation in the vicinity of the source, thus allowing progress in source localisation, while simultaneously revealing the beaming properties of NTC radio sources. <br><br> We present a case event showing two beams localised on opposite sides of the magnetic equator. At any selected frequency, triangulation points to a single region source of small size. Its position is compatible with the range of possible loci of sources predicted by the radio window theory of Jones (1982) in a frame of constraints relaxed from the simple sketch proposed in early works. The analysis of similar observations from the Dynamics Explorer 1 by Jones et al. (1987) enabled the authors to claim validation of the radio window theory. CLUSTER observations, however, reveal a large beaming cone angle projected onto the ecliptic plane, a feature unobservable by Dynamics Explorer which had a different spin axis orientation. According to the radio window theory, such a large observed cone angle can only be formed by a series of point sources, each beaming in a narrow cone angle. This study demonstrates the difficulty of validating NTC linear generation mechanisms using global beaming properties alone

    Alfvén waves in the near-PSBL lobe: Cluster observations

    Get PDF
    Electromagnetic low-frequency waves in the magnetotail lobe close to the PSBL (Plasma Sheet Boundary Layer) are studied using the Cluster spacecraft. The lobe waves show Alfvénic properties and transport their wave energy (Poynting flux) on average toward the Earth along magnetic field lines. Most of the wave events are rich with oxygen (O+) ion plasma. The rich O+ plasma can serve to enhance the magnetic field fluctuations, resulting in a greater likelihood of observation, but it does not appear to be necessary for the generation of the waves. Taking into account the fact that all events are associated with auroral electrojet enhancements, the source of the lobe waves might be a substorm-associated instability, i.e. some instability near the reconnection site, or an ion beam-related instability in the PSBL

    Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Get PDF
    We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the &quot;incident&quot; MSH plasma, the second one mostly parallel to <b>B</b>. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to <b>B</b>, with <i>M<sub>A</sub></i>=3 and &beta;>10 (peak value 23). The magnetic field clock angle rotates by 70&deg; across the MP. <i>E<sub>x</sub></i> is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The <i>E</i>&times;<i>B</i> velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (&lt;350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006)
    • 

    corecore