616 research outputs found
Method and Apparatus of Measuring Velocity and Sound Attenuation Coefficient in Bulk Materials Based on the Analysis of the Structure of Sound-Insulation Materials on the Basis of Perlite
This paper presents the results of research and describes the apparatus for measuring the acoustic characteristics of bulk materials. Ultrasound, it has passed through a layer of bulk material, is further passes through an air gap. The presence of air gap prevents from measuring tract mechanical contacts, but complicates the measurement technology Studies were conducted on the example of measuring the acoustic characteristics of the widely used perlite-based sound-proofing material
Nodule-Specific Regulation of Phosphatidylinositol Transfer Protein Expression in Lotus japonicus
Phosphatidylinositol transfer proteins (PITPs) modulate signal transduction pathways and membrane-trafficking functions in eukaryotes. Here, we describe the characterization of a gene family from Lotus japonicus that encodes a novel class of plant PITP-like proteins (LjPLPs) and that is regulated in an unusual nodule-specific manner. Members of this gene family were identified based on their nucleotide sequence homology with a previously described cDNA, LjNOD16, which encodes the L. japonicus late nodulin Nlj16. Nlj16 or highly related amino acid sequences are shown to constitute C-terminal domains of LjPLPs and are suggested to function as specific plasma membrane targeting modules. The expression patterns of one member of this gene family (LjPLP-IV) revealed that LjNOD16 mRNA synthesis in nodules is the result of the transcriptional activity of a nodule-specific promoter located in an intron of the LjPLP-IV gene. This intron-borne bidirectional promoter also generates nodule-specific antisense transcripts derived from the N-terminal PITP domain coding region of the LjPLP-IV gene. We propose that Nlj16 protein synthesis and LjPLP-IV antisense transcript generation are components of an elaborate mechanism designed to control LjPLP synthesis and/or functioning in nodules
Jorgensen's inequality for non-Archimedean metric spaces.
Jørgensen’s inequality gives a necessary condition for a non-elementary group of Möbius transformations to be discrete. In this paper we generalise this to the case of groups of Möbius transformations of a non-Archimedean metric space. As an application, we give a version of Jørgensen’s inequality for SL(2, ℚ p )
2-Vector Spaces and Groupoids
This paper describes a relationship between essentially finite groupoids and
2-vector spaces. In particular, we show to construct 2-vector spaces of
Vect-valued presheaves on such groupoids. We define 2-linear maps corresponding
to functors between groupoids in both a covariant and contravariant way, which
are ambidextrous adjoints. This is used to construct a representation--a weak
functor--from Span(Gpd) (the bicategory of groupoids and spans of groupoids)
into 2Vect. In this paper we prove this and give the construction in detail.Comment: 44 pages, 5 figures - v2 adds new theorem, significant changes to
proofs, new sectio
Genome-wide mapping indicates that p73 and p63 Co-occupy target sites and have similar DNA-binding profiles in vivo
Background: The p53 homologs, p63 and p73, share, ~85% amino acid identity in their DNA-binding domains, but they have distinct biological functions. Principal Findings: Using chromatin immunoprecipitation and high-resolution tiling arrays covering the human genome, we identify p73 DNA binding sites on a genome-wide level in ME180 human cervical carcinoma cells. Strikingly, the p73 binding profile is indistinguishable from the previously described binding profile for p63 in the same cells. Moreover, the p73:p63 binding ratio is similar at all genomic loci tested, suggesting that there are few, if any, targets that are specific for one of these factors. As assayed by sequential chromatin immunoprecipitation, p63 and p73 co-occupy DNA target sites in vivo, suggesting that p63 and p73 bind primarily as heterotetrameric complexes in ME180 cells. Conclusions: The observation that p63 and p73 associate with the same genomic targets suggest that their distinct biological functions are due to cell-type specific expression and/or protein domains that involve functions other than DNA binding. © 2010 Yang et al
Mapping the strand-specific transcriptome of fission yeast
Pervasive genome-wide transcription is widespread in eukaryotic cells, but key features of the transcriptome have yet to be fully characterized. a new study using antibody-based detection of RNA-DNA duplexes on tiling arrays now reveals a complex, strand-specific transcriptional world in fission yeast
Lectures on BCOV holomorphic anomaly equations
The present article surveys some mathematical aspects of the BCOV holomorphic
anomaly equations introduced by Bershadsky, Cecotti, Ooguri and Vafa. It grew
from a series of lectures the authors gave at the Fields Institute in the
Thematic Program of Calabi-Yau Varieties in the fall of 2013.Comment: reference added, typos correcte
- …