1,667 research outputs found
Mapas Catastrales: Historia - GeografĂa - HistoriografĂa
Not availableNo disponibl
Resistive transitions in quench-condensed Bi films near a normal-metal ground plane
We report observations of the zero-field resistive transitions of superconducting quench-condensed Bi0.97Tl0.03 films both near electrically isolated normal-metal ground planes and on clean fire-polished glass. Transition temperatures, obtained by fitting the data with the two-dimensional Aslamazov-Larkin theory of fluctuation conductance, were found to be significantly enhanced for films deposited over ground planes versus those deposited onto insulating substrates. Conductivity enhancement due to superconducting fluctuations was found to be much less than expected for the thinnest samples. This suppression was coincident with broadened superconductor transitions that are consistent with nonuniform sample thickness. Sufficiently thick films showed reasonable agreement with both the fluctuation theory and assumption of uniformity. We discuss discrepancies between our fits and the theory within the context of film morphology
Relationship Between Plant Phenology and Campylomma verbasci (Hemiptera: Miridae) Damage to Apple Fruit
Damage to apple (Malus domestica Borkhausen) by Campylomma verbasci (Meyer), has occurred even when effective insecticides are applied against nymphs present at the petal fall stage. However, insecticide application at pink bud prevents damage more effectively than when the same insecticides are applied at petal fall. We tested the hypothesis that most mullein bug damage occurs between bloom and petal fall by using two approaches. In the first, we caged naturally occurring nymphs on âRed Delicious' limbs and restricted their possible infestation timing by applying insecticides both before cages were placed and also through the cage at various crop stages from bloom through fruit set. In a second approach, we caged Red Delicious and âMcIntosh' fruit clusters and introduced either small or large nymphs at various times from bloom through 3 wk after fruit set. Fruit damage on both varieties was greatest when small nymphs were introduced between bloom and petal fall; damage was uncommon from small nymphs introduced after fruit were â6 mm, and absent after the 13 mm size. However, damage was greater in cages into which large nymphs were introduced at 10-13 mm, than in untreated control cages. Fruit damage levels were equivalent on McIntosh and Red Delicious. We compared emergence of nymphs from McIntosh shoots with adjacent plantings of other, more susceptible cultivars by forcing hatch in the laboratory from cuttings collected in late winter. Significantly more nymphs hatched from susceptible varieties than from McIntosh, suggesting possible differences in levels of ovipositio
Marginal benefit to South Asian economies from SO2 emissions mitigation and subsequent increase in monsoon rainfall
Sulphate aerosols are dominated by SO2 emissions from coal-burning for the Indian electricity sector and they are thought to have a short term but significant, negative impact on South Asian Summer Monsoon rainfall. This reduction in precipitation in turn can lead to reduced economic outputs, primarily through smaller agricultural yields. By bringing together estimates of (a) the impact of sulphate aerosols on precipitation and (b) the observed relationship between monsoon rainfall and GDP, we present a methodology to estimate the possible financial cost of this effect on the Indian economy and on its agricultural sector. Our preliminary estimate is that the derived benefits could be large enough that around 50% of Indiaâs SO2 emissions could be economically mitigated at no cost or net benefit, although it should be noted that the large uncertainties in the underlying relationships mean that the overall uncertainty is also large. Comparison of the 1952â1981 and 1982â2011 periods indicates that the Indian economy may now be more resilient to variability of the monsoon rainfall. As such, a case could be made for action to reduce SO2 emissions, particularly in the crucial monsoon period. This would have a significant, positive effect on a crucial and large sector in Indiaâs economy and the effects would be visible almost instantly. The recent growth in renewable energy sources in India and the consequent, reduced increase in coal burning means that further financial costs have already been avoided. This impact should be further investigated so that it can be included in cost-benefit analyses of different fuel types in the region. The significant uncertainties associated with these calculations are discussed
Cosmological Consequences of String Axions
Axion fluctuations generated during inflation lead to isocurvature and
non-Gaussian temperature fluctuations in the cosmic microwave background
radiation. Following a previous analysis for the model independent string axion
we consider the consequences of a measurement of these fluctuations for two
additional string axions. We do so independent of any cosmological assumptions
except for the axions being massless during inflation. The first axion has been
shown to solve the strong CP problem for most compactifications of the
heterotic string while the second axion, which does not solve the strong CP
problem, obeys a mass formula which is independent of the axion scale. We find
that if gravitational waves interpreted as arising from inflation are observed
by the PLANCK polarimetry experiment with a Hubble constant during inflation of
H_inf \apprge 10^13 GeV the existence of the first axion is ruled out and the
second axion cannot obey the scale independent mass formula. In an appendix we
quantitatively justify the often held assumption that temperature corrections
to the zero temperature QCD axion mass may be ignored for temperatures T
\apprle \Lambda_QCD.Comment: 27 pages, 4 figures; v2: References corrected; v3: Assumptions
simplified, minor corrections, conclusions unchange
Superfluid pairing in a mixture of a spin-polarized Fermi gas and a dipolar condensate
We consider a mixture of a spin-polarized Fermi gas and a dipolar
Bose-Einstein condensate in which s-wave scattering between fermions and the
quasiparticles of the dipolar condensate can result in an effective attractive
Fermi-Fermi interaction anisotropic in nature and tunable by the dipolar
interaction. We show that such an interaction can significantly increase the
prospect of realizing a superfluid with a gap parameter characterized with a
coherent superposition of all odd partial waves. We formulate, in the spirit of
the Hartree-Fock-Bogoliubov mean-field approach, a theory which allows us to
estimate the critical temperature when the anisotropic Fock potential is taken
into consideration and to determine the system parameters that optimize the
critical temperature at which such a superfluid emerges before the system
begins to phase separate.Comment: 10 pages, 3 figure
Preliminary Canopy Removal Experiments in Algal Dominated Communities Low on the Shore and in the Shallow Subtidal on the Isle of Man
The algal dominated communities immediately above and below the low-water spring level on a moderately exposed Manx shore were investigated by canopy removal experiments. Fucus serratus, Laminaria digitata and L. hyperborea were removed. Competition was shown to be important in determining the zonation of L. digitata and the distribution along the wave exposure gradient of other species such as Alaria esculenta, Desmarestia aculeata and D. viridis, and L. saccharina. Many species of algal epiphytes were early colonizers of canopy removal areas suggesting that competition from canopy algae usually restricts them to an epiphytic habit. The results indicate that interactions between macrophytes are much more important than grazing in structuring these communities
An artificial intelligence approach to predicting personality types in dogs
Canine personality and behavioural characteristics have a significant influence on relationships between domestic dogs and humans as well as determining the suitability of dogs for specific working roles. As a result, many researchers have attempted to develop reliable personality assessment tools for dogs. Most previous work has analysed dogsâ behavioural patterns collected via questionnaires using traditional statistical analytic approaches. Artificial Intelligence has been widely and successfully used for predicting human personality types. However, similar approaches have not been applied to data on canine personality. In this research, machine learning techniques were applied to the classification of canine personality types using behavioural data derived from the C-BARQ project. As the dataset was not labelled, in the first step, an unsupervised learning approach was adopted and K-Means algorithm was used to perform clustering and labelling of the data. Five distinct categories of dogs emerged from the K-Means clustering analysis of behavioural data, corresponding to five different personality types. Feature importance analysis was then conducted to identify the relative importance of each behavioural variableâs contribution to each cluster and descriptive labels were generated for each of the personality traits based on these associations. The five personality types identified in this paper were labelled: âExcitable/Hyperattachedâ, âAnxious/Fearfulâ, âAloof/Predatoryâ, âReactive/Assertiveâ, and âCalm/Agreeableâ. Four machine learning models including Support Vector Machine (SVM), K-Nearest Neighbour (KNN), NaĂŻve Bayes, and Decision Tree were implemented to predict the personality traits of dogs based on the labelled data. The performance of the models was evaluated using fivefold cross validation method and the results demonstrated that the Decision Tree model provided the best performance with a substantial accuracy of 99%. The novel AI-based methodology in this research may be useful in the future to enhance the selection and training of dogs for specific working and non-working roles
Management of Critical Machine Settings for Accelerators at CERN
In high energy and high intensity accelerators as the LHC, the energy stored in the beams is orders of magnitude above the damage level of accelerator components like magnets. Uncontrolled release of this energy can lead to serious damage of equipment and long machine downtimes. In order to cope with these potential risks Protection Systems were developed at CERN including two software systems: MCS (Management of Critical Settings) and RBAC (Role Based Access Control). RBAC provides an authentication and authorization facility for access to the critical parts of the control system. A second layer of security is provided by MCS which ensures that critical parameters are coherent within the software and hardware components and can only be changed by an authorized person. The MCS system is aimed at the most critical parameters in either potentially dangerous equipment or protection devices (e.g. Beam Loss Monitors). It is complementary to the RBAC infrastructure. Both systems are fully integrated in the control system for the LHC and SPS and were successfully commissioned already before first beam in the LHC. This paper will describe the MCS architecture, current status and its operational deployment in the LHC
- âŠ