4,093 research outputs found
Condensation temperature of interacting Bose gases with and without disorder
The momentum-shell renormalization group (RG) is used to study the
condensation of interacting Bose gases without and with disorder. First of all,
for the homogeneous disorder-free Bose gas the interaction-induced shifts in
the critical temperature and chemical potential are determined up to second
order in the scattering length. The approach does not make use of dimensional
reduction and is thus independent of previous derivations. Secondly, the RG is
used together with the replica method to study the interacting Bose gas with
delta-correlated disorder. The flow equations are derived and found to reduce,
in the high-temperature limit, to the RG equations of the classical
Landau-Ginzburg model with random-exchange defects. The random fixed point is
used to calculate the condensation temperature under the combined influence of
particle interactions and disorder.Comment: 7 pages, 2 figure
p>2 spin glasses with first order ferromagnetic transitions
We consider an infinite-range spherical p-spin glass model with an additional
r-spin ferromagnetic interaction, both statically using a replica analysis and
dynamically via a generating functional method. For r>2 we find that there are
first order transitions to ferromagnetic phases. For r<p there are two
ferromagnetic phases, one non-glassy replica symmetric and one exhibiting
glassy one-step replica symmetry breaking and aging, whereas for r>=p only the
replica symmetric phase exists.Comment: AMSLaTeX, 13 pages, 23 EPS figures ; one figure correcte
Response variability in balanced cortical networks
We study the spike statistics of neurons in a network with dynamically
balanced excitation and inhibition. Our model, intended to represent a generic
cortical column, comprises randomly connected excitatory and inhibitory leaky
integrate-and-fire neurons, driven by excitatory input from an external
population. The high connectivity permits a mean-field description in which
synaptic currents can be treated as Gaussian noise, the mean and
autocorrelation function of which are calculated self-consistently from the
firing statistics of single model neurons. Within this description, we find
that the irregularity of spike trains is controlled mainly by the strength of
the synapses relative to the difference between the firing threshold and the
post-firing reset level of the membrane potential. For moderately strong
synapses we find spike statistics very similar to those observed in primary
visual cortex.Comment: 22 pages, 7 figures, submitted to Neural Computatio
Spectral dependence of purely-Kerr driven filamentation in air and argon
Based on numerical simulations, we show that higher-order nonlinear indices
(up to and , respectively) of air and argon have a dominant
contribution to both focusing and defocusing in the self-guiding of ultrashort
laser pulses over most of the spectrum. Plasma generation and filamentation are
therefore decoupled. As a consequence, ultraviolet wavelength may not be the
optimal wavelengths for applications requiring to maximize ionization.Comment: 14 pages, 4 figures (14 panels
Extended Dynamical Mean Field Theory Study of the Periodic Anderson Model
We investigate the competition of the Kondo and the RKKY interactions in
heavy fermion systems. We solve a periodic Anderson model using Extended
Dynamical Mean Field Theory (EDMFT) with QMC. We monitor simultaneously the
evolution of the electronic and magnetic properties. As the RKKY coupling
increases the heavy fermion quasiparticle unbinds and a local moment forms. At
a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the
two transitions occur at different points and the disapparence of the magnetism
is not described by a local quantum critical point.Comment: 4 pages, 4 figure
On the work distribution for the adiabatic compression of a dilute classical gas
We consider the adiabatic and quasi-static compression of a dilute classical
gas, confined in a piston and initially equilibrated with a heat bath. We find
that the work performed during this process is described statistically by a
gamma distribution. We use this result to show that the model satisfies the
non-equilibrium work and fluctuation theorems, but not the
flucutation-dissipation relation. We discuss the rare but dominant realizations
that contribute most to the exponential average of the work, and relate our
results to potentially universal work distributions.Comment: 4 page
Higher-order Kerr terms allow ionization-free filamentation in gases
We show that higher-order nonlinear indices (, , , )
provide the main defocusing contribution to self-channeling of ultrashort laser
pulses in air and Argon at 800 nm, in contrast with the previously accepted
mechanism of filamentation where plasma was considered as the dominant
defocusing process. Their consideration allows to reproduce experimentally
observed intensities and plasma densities in self-guided filaments.Comment: 11 pages, 6 figures (11 panels
Soft Fermi Surfaces and Breakdown of Fermi Liquid Behavior
Electron-electron interactions can induce Fermi surface deformations which
break the point-group symmetry of the lattice structure of the system. In the
vicinity of such a "Pomeranchuk instability" the Fermi surface is easily
deformed by anisotropic perturbations, and exhibits enhanced collective
fluctuations. We show that critical Fermi surface fluctuations near a d-wave
Pomeranchuk instability in two dimensions lead to large anisotropic decay rates
for single-particle excitations, which destroy Fermi liquid behavior over the
whole surface except at the Brillouin zone diagonal.Comment: 12 pages, 2 figures, revised version as publishe
- …