109 research outputs found
Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea Is Compromised in Connexin30 Null Mice
Connexin26 (Cx26) and connexin30 (Cx30) are two major protein subunits that co-assemble to form gap junctions (GJs) in the cochlea. Mutations in either one of them are the major cause of non-syndromic prelingual deafness in humans. Because the mechanisms of cochlear pathogenesis caused by Cx mutations are unclear, we investigated effects of Cx30 null mutation on GJ-mediated ionic and metabolic coupling in the cochlea of mice. A novel flattened cochlear preparation was used to directly assess intercellular coupling in the sensory epithelium of the cochlea. Double-electrode patch clamp recordings revealed that the absence of Cx30 did not significantly change GJ conductance among the cochlear supporting cells. The preserved electrical coupling is consistent with immunolabeling data showing extensive Cx26 GJs in the cochlea of the mutant mice. In contrast, dye diffusion assays showed that the rate and extent of intercellular transfer of multiple fluorescent dyes (including a non-metabolizable D-glucose analogue, 2-NBDG) among cochlear supporting cells were severely reduced in Cx30 null mice. Since the sensory epithelium in the cochlea is an avascular organ, GJ-facilitated intercellular transfer of nutrient and signaling molecules may play essential roles in cellular homeostasis. To test this possibility, NBDG was used as a tracer to study the contribution of GJs in transporting glucose into the cochlear sensory epithelium when delivered systemically. NBDG uptake in cochlear supporting cells was significantly reduced in Cx30 null mice. The decrease was also observed with GJ blockers or glucose competition, supporting the specificity of our tests. These data indicate that GJs facilitate efficient uptake of glucose in the supporting cells. This study provides the first direct experimental evidence showing that the transfer of metabolically-important molecules in cochlear supporting cells is dependent on the normal function of GJs, thereby suggesting a novel pathogenesis process in the cochlea for Cx-mutation-linked deafness
BAAV Mediated GJB2 Gene Transfer Restores Gap Junction Coupling in Cochlear Organotypic Cultures from Deaf Cx26Sox10Cre Mice
The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26Sox10Cre mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10–Cre line. Cx26Sox10Cre mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26Sox10Cre mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans
High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation
Finding New Genes for Non-Syndromic Hearing Loss through an In Silico Prioritization Study
At present, 51 genes are already known to be responsible for Non-Syndromic hereditary Hearing Loss (NSHL), but the knowledge of 121 NSHL-linked chromosomal regions brings to the hypothesis that a number of disease genes have still to be uncovered. To help scientists to find new NSHL genes, we built a gene-scoring system, integrating Gene Ontology, NCBI Gene and Map Viewer databases, which prioritizes the candidate genes according to their probability to cause NSHL. We defined a set of candidates and measured their functional similarity with respect to the disease gene set, computing a score () that relies on the assumption that functionally related genes might contribute to the same (disease) phenotype. A Kolmogorov-Smirnov test, comparing the pair-wise distribution on the disease gene set with the distribution on the remaining human genes, provided a statistical assessment of this assumption. We found at a p-value that the former pair-wise is greater than the latter, justifying a prioritization strategy based on the functional similarity of candidate genes respect to the disease gene set. A cross-validation test measured to what extent the ranking for NSHL is different from a random ordering: adding 15% of the disease genes to the candidate gene set, the ranking of the disease genes in the first eight positions resulted statistically different from a hypergeometric distribution with a p-value and a power. The twenty top-scored genes were finally examined to evaluate their possible involvement in NSHL. We found that half of them are known to be expressed in human inner ear or cochlea and are mainly involved in remodeling and organization of actin formation and maintenance of the cilia and the endocochlear potential. These findings strongly indicate that our metric was able to suggest excellent NSHL candidates to be screened in patients and controls for causative mutations
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
The black-glaze production in the Tyrrhenian coast of southern Italy: a review of the archaeometric data.
L’articolo fornisce indicazioni desunte dalle analisi archeometriche realizzate sulle produzioni di ceramica a vernice nera di alcuni siti della costa tirrenica
- …