6,344 research outputs found
Combining gravity with the forces of the standard model on a cosmological scale
We prove the existence of a spectral resolution of the Wheeler-DeWitt
equation when the underlying spacetime is a Friedman universe with flat spatial
slices and where the matter fields are comprised of the strong interaction,
with \SU(3) replaced by a general \SU(n), , and the electro-weak
interaction. The wave functions are maps from to a subspace of the
antisymmetric Fock space, and one noteworthy result is that, whenever the
electro-weak interaction is involved, the image of an eigenfunction is in
general not one dimensional, i.e., in general it makes no sense specifying a
fermion and looking for an eigenfunction the range of which is contained in the
one dimensional vector space spanned by the fermion.Comment: 53 pages, v6: some typos correcte
Daylight operation of a free space, entanglement-based quantum key distribution system
Many quantum key distribution (QKD) implementations using a free space
transmission path are restricted to operation at night time in order to
distinguish the signal photons used for a secure key establishment from
background light. Here, we present a lean entanglement-based QKD system
overcoming that imitation. By implementing spectral, spatial and temporal
filtering techniques, we were able to establish a secure key continuously over
several days under varying light and weather conditions.Comment: 13 pages, 6 figure
The Starburst Nature of Lyman-Break Galaxies: Testing UV Extinction with X-rays
We derive the bolometric to X-ray correlation for a local sample of normal
and starburst galaxies and use it, in combination with several UV reddening
schemes, to predict the 2--8 keV X-ray luminosity for a sample of 24
Lyman-break galaxies in the HDF/CDF-N. We find that the mean X-ray luminosity,
as predicted from the Meurer UV reddening relation for starburst galaxies,
agrees extremely well with the Brandt stacking analysis. This provides
additional evidence that Lyman-break galaxies can be considered as scaled-up
local starbursts and that the locally derived starburst UV reddening relation
may be a reasonable tool for estimating the UV extinction at high redshift. Our
analysis shows that the Lyman-break sample can not have far-IR to far-UV flux
ratios similar to nearby ULIGs, as this would predict a mean X-ray luminosity
100 times larger than observed, as well as far-IR luminosities large enough to
be detected in the sub-mm. We calculate the UV reddening expected from the
Calzetti effective starburst attenuation curve and the radiative transfer
models of Witt & Gordon for low metallicity dust in a shell geometry with
homogeneous or clumpy dust distributions and find that all are consistent with
the observed X-ray emission. Finally, we show that the mean X-ray luminosity of
the sample would be under predicted by a factor of 6 if the the far-UV is
unattenuated by dust.Comment: 7 pages, 3 figures. Accepted for publication in A
A consistent explanation of the Roper phenomenology
We study the electromagnetic transitions of the Roper N(1440) resonance. Our
results, when combined with the previously obtained for the mass and the pionic
strong decay widths of the Roper, show that within a non-relativistic
constituent quark model scheme, a comprehensible understanding of the Roper
phenomenology can be achieved. They also seem to support the view of the Roper
as a radial excitation of the nucleon, though more experimental data are needed
to reach a definitive conclusion.Comment: 14 pages, 4 figures (7 postscript files). Some referencess adde
On the Nature of Singularities in Plane Symmetric Scalar Field Cosmologies
The nature of the initial singularity in spatially compact plane symmetric
scalar field cosmologies is investigated. It is shown that this singularity is
crushing and velocity dominated and that the Kretschmann scalar diverges
uniformly as it is approached. The last fact means in particular that a maximal
globally hyperbolic spacetime in this class cannot be extended towards the past
through a Cauchy horizon. A subclass of these spacetimes is identified for
which the singularity is isotropic.Comment: 7 pages, MPA-AR-94-
Quantum walks with infinite hitting times
Hitting times are the average time it takes a walk to reach a given final
vertex from a given starting vertex. The hitting time for a classical random
walk on a connected graph will always be finite. We show that, by contrast,
quantum walks can have infinite hitting times for some initial states. We seek
criteria to determine if a given walk on a graph will have infinite hitting
times, and find a sufficient condition, which for discrete time quantum walks
is that the degeneracy of the evolution operator be greater than the degree of
the graph. The set of initial states which give an infinite hitting time form a
subspace. The phenomenon of infinite hitting times is in general a consequence
of the symmetry of the graph and its automorphism group. Using the irreducible
representations of the automorphism group, we derive conditions such that
quantum walks defined on this graph must have infinite hitting times for some
initial states. In the case of the discrete walk, if this condition is
satisfied the walk will have infinite hitting times for any choice of a coin
operator, and we give a class of graphs with infinite hitting times for any
choice of coin. Hitting times are not very well-defined for continuous time
quantum walks, but we show that the idea of infinite hitting-time walks
naturally extends to the continuous time case as well.Comment: 28 pages, 3 figures in EPS forma
Brane Formation and Cosmological Constraint on the Number of Extra Dimensions
Special relativity is generalized to extra dimensions and quantized energy
levels of particles are obtained. By calculating the probability of particles'
motion in extra dimensions at high temperature of the early universe, it is
proposed that the branes may have not existed since the very beginning of the
universe, but formed later. Meanwhile, before the formation, particles of the
universe may have filled in the whole bulk, not just on the branes. This
scenario differs from that in the standard big bang cosmology in which all
particles are assumed to be in the 4D spacetime. So, in brane models, whether
our universe began from a 4D big bang singularity is questionable. A
cosmological constraint on the number of extra dimensions is also given which
favors .Comment: 11 pages, no figures. To appear in IJT
Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence
Single dye molecules at cryogenic temperatures display many spectroscopic
phenomena known from free atoms and are thus promising candidates for
fundamental quantum optical studies. However, the existing techniques for the
detection of single molecules have either sacrificed the information on the
coherence of the excited state or have been inefficient. Here we show that
these problems can be addressed by focusing the excitation light near to the
absorption cross section of a molecule. Our detection scheme allows us to
explore resonance fluorescence over 9 orders of magnitude of excitation
intensity and to separate its coherent and incoherent parts. In the strong
excitation regime, we demonstrate the first observation of the Mollow triplet
from a single solid-state emitter. Under weak excitation we report the
detection of a single molecule with an incident power as faint as 150 attoWatt,
paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure
- …
