1,986 research outputs found
Recommended from our members
Cues from neuroepithelium and surface ectoderm maintain neural crest-free regions within cranial mesenchyme of the developing chick
Within the developing vertebrate head, neural crest cells (NCCs) migrate from the dorsal surface of the hindbrain into the mesenchyme adjacent to rhombomeres (r)1 plus r2, r4 and r6 in three segregated streams. NCCs do not enter the intervening mesenchyme adjacent to r3 or r5, suggesting that these regions contain a NCC-repulsive activity. We have used surgical manipulations in the chick to demonstrate that r3 neuroepithelium and its overlying surface ectoderm independently help maintain the NCC-free zone within r3 mesenchyme. In the absence of r3, subpopulations of NCCs enter r3 mesenchyme in a dorsolateral stream and an ectopic cranial nerve forms between the trigeminal and facial ganglia. The NCC-repulsive activity dissipates/degrades within 5-10 hours of r3 removal. Initially, r4 NCCs more readily enter the altered mesenchyme than r2 NCCs, irrespective of their maturational stage. Following surface ectoderm removal, mainly r4 NCCs enter r3 mesenchyme within 5 hours, but after 20 hours the proportions of r2 NCCs and r4 NCCs ectopically within r3 mesenchyme appear similar
Non-Markoffian effects of a simple nonlinear bath
We analyze a model of a nonlinear bath consisting of a single two-level
system coupled to a linear bath (a classical noise force in the limit
considered here). This allows us to study the effects of a nonlinear,
non-Markoffian bath in a particularly simple situation. We analyze the effects
of this bath onto the dynamics of a spin by calculating the decay of the
equilibrium correlator of the spin's z-component. The exact results are
compared with those obtained using three commonly used approximations: a
Markoffian master equation for the spin dynamics, a weak-coupling
approximation, and the substitution of a linear bath for the original nonlinear
bath.Comment: 7 pages, 6 figure
Natural history of Arabidopsis thaliana and oomycete symbioses
Molecular ecology of plant–microbe interactions has immediate significance for filling a gap in knowledge between the laboratory discipline of molecular biology and the largely theoretical discipline of evolutionary ecology. Somewhere in between lies conservation biology, aimed at protection of habitats and the diversity of species housed within them. A seemingly insignificant wildflower called Arabidopsis thaliana has an important contribution to make in this endeavour. It has already transformed botanical research with deepening understanding of molecular processes within the species and across the Plant Kingdom; and has begun to revolutionize plant breeding by providing an invaluable catalogue of gene sequences that can be used to design the most precise molecular markers attainable for marker-assisted selection of valued traits. This review describes how A. thaliana and two of its natural biotrophic parasites could be seminal as a model for exploring the biogeography and molecular ecology of plant–microbe interactions, and specifically, for testing hypotheses proposed from the geographic mosaic theory of co-evolution
The SPECFIND V2.0 catalogue of radio cross-identifications and spectra. SPECFIND meets the Virtual Observatory
The new release of the SPECFIND radio cross-identification catalogue,
SPECFIND V2.0, is presented. It contains 107488 cross-identified objects with
at least three radio sources observed at three independent frequencies.
Compared to the previous release the number of entry radio catalogues is
increased from 20 to 97 containing 115 tables. This large increase was only
made possible by the development of four tools at CDS which use the standards
and infrastructure of the Virtual Observatory (VO). This was done in the
framework of the VO-TECH European Design Study of the Sixth Framework Program.
We give an overview of the different classes of radio sources that a user can
encounter. Due to the increase of frequency coverage of the input radio
catalogues, this release demonstrates that the SPECFIND algorithm is able to
detect spectral breaks around a frequency of ~1 GHz.Comment: 11 pages, 10 figures, accepted for publication in A&
DOSCATs: Double standards for protein quantification
The two most common techniques for absolute protein quantification are based on either mass spectrometry (MS) or on immunochemical techniques, such as western blotting (WB). Western blotting is most often used for protein identification or relative quantification, but can also be deployed for absolute quantification if appropriate calibration standards are used. MS based techniques offer superior data quality and reproducibility, but WB offers greater sensitivity and accessibility to most researchers. It would be advantageous to apply both techniques for orthogonal quantification, but workflows rarely overlap. We describe DOSCATs (DOuble Standard conCATamers), novel calibration standards based on QconCAT technology, to unite these platforms. DOSCATs combine a series of epitope sequences concatenated with tryptic peptides in a single artificial protein to create internal tryptic peptide standards for MS as well as an intact protein bearing multiple linear epitopes. A DOSCAT protein was designed and constructed to quantify five proteins of the NF-κB pathway. For three target proteins, protein fold change and absolute copy per cell values measured by MS and WB were in excellent agreement. This demonstrates that DOSCATs can be used as multiplexed, dual purpose standards, readily deployed in a single workflow, supporting seamless quantitative transition from MS to WB
Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres
How do MNC R&D laboratory roles affect employee international assignments?
Research and development (R&D) employees are important human resources for multinational corporations (MNCs) as they are the driving force behind the advancement of innovative ideas and products. International assignments of these employees can be a unique way to upgrade their expertise; allowing them to effectively recombine their unique human resources to progress existing knowledge and advance new ones. This study aims to investigate the effect of the roles of R&D laboratories in which these employees work on the international assignments they undertake. We categorise R&D laboratory roles into those of the support laboratory, the locally integrated laboratory and the internationally interdependent laboratory. Based on the theory of resource recombinations, we hypothesise that R&D employees in support laboratories are not likely to assume international assignments, whereas those in locally integrated and internationally interdependent laboratories are likely to assume international assignments. The empirical evidence, which draws from research conducted on 559 professionals in 66 MNC subsidiaries based in Greece, provides support to our hypotheses. The resource recombinations theory that extends the resource based view can effectively illuminate the international assignment field. Also, research may provide more emphasis on the close work context of R&D scientists rather than analyse their demographic characteristics, the latter being the focus of scholarly practice hitherto
- …
