1,185 research outputs found

    Incident light orientation lets C4 monocotyledonous leaves make light work differently

    Get PDF
    Photosynthesis is an important driver of ecosystem sustainability in the face of climate change. Monocotyledonous crop species with C4 photosynthesis such as maize (Zea mays L; corn) and sugar cane are crucial for future food security and biofuel crop requirements, while C4 pasture grasses such as Paspalum are central to natural ecosystems. The global demand for corn will exceed that for wheat and rice by 2020, making it the world's most important crop. Light-driven photosynthesis supports plant biomass production, but plants have also evolved safety valve mechanisms that attenuate the absorption of potentially lethal levels of excess light. The array of survival responses that enables leaves to evade photoinhibition is complex and involves chloroplast and leaf movement as well as the molecular rearrangements that facilitate thermal energy dissipation. Here we report a novel morphological mechanism that allows C4 monocotyledonous leaves to regulate photosynthesis independently on each surface with respect to incident light allowing better adaptation to water deficits and light stress. We show that under abaxial illumination as occurs when monocotyledonous leaves curl in response to water stress the stomata close and photosynthetic metabolism shuts down on the adaxial surface of C4 leaves but these parameters increase in function to the abaxial surface. We discuss how this regulation confers a survival advantage to the C4 relative to C3 leaves which are unable to regulate their dorso-ventral functions in relation to light

    Glutathione – linking cell proliferation to oxidative stress

    Get PDF
    Significance: The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. Recent Advances: The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential is maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. Critical Issues: The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that similar redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. Future Directions: The nuclear GSH pool provides an appropriate redox environment for essential nuclear functions. Future work will function on how this essential thiol interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus are keep steps to unravelling the complexities of nuclear redox controls

    Learning to breathe: developmental phase transitions in oxygen status

    Get PDF
    Plants are developmentally disposed to considerable changes in oxygen availability, yet our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide (.NO) and reactive oxygen species (ROS), and redox potential occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. Here, we describe the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches, within which oxygen-, ROS-, .NO- and redox-dependent signalling curate developmental transitions in plants

    Proposals for a practical calibration method for mechanical torque measurement on the wind turbine drive train under test on a test bench

    Get PDF
    The mechanical torque input into the wind turbine drive train is a very useful measurement for tests performed on a test bench. To ensure the accuracy and the reliability, an accurate calibration of the torque measurement must be carried out and repeated within a certain period of time. However, owing to the high torque level and large structure size, such a calibration is both expensive and time consuming. To overcome this challenge, a new calibration method is proposed here. The method is based on the electrical power measurement, where a high level of accuracy is much easier to achieve. With the help of a special test process, a relationship between the torque-measuring signal and the electrical power can be established. The process comprises two tests with the drive train running in different operating modes. The calibration is possible by carrying out the same test process on several different torque levels. Detailed uncertainty analysis of the method is presented, whereby the uncertainty can be calculated by means of matrix operation and also numerically. As a demonstration, the implementation of the method on a test bench drive train that contains two 5-MW motors in tandem with the motors operating in a back-to-back configuration is also presented. Finally, some variations on the method and possible ways of achieving better accuracy are discussed. © 2020 The Authors. Wind Energy published by John Wiley & Sons Lt

    Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses

    Get PDF
    Here, the contribution of stomatal and nonstomatal factors to photosynthetic inhibition under water stress in four tropical C(4) grasses was investigated (Panicum coloratum, Bothriochloa bladhii, Cenchrus ciliaris and Astrebla lappacea ). Plants were grown in well watered soil, and then the effects of soil drying were measured on leaf gas exchange, chlorophyll a fluorescence and water relations. During the drying cycle, leaf water potential (Psi(leaf)) and relative water content (RWC) decreased from c. -0.4 to -2.8 MPa and 100-40%, respectively. The CO(2) assimilation rates (A) and quantum yield of PSII (Phi(PSII)) of all four grasses decreased rapidly with declining RWC. High CO(2) concentration (2500 mul l(-1)) had no effect on A or Phi(PSII) at any stage of the drying cycle. Electron transport capacity and dark respiration rates were unaltered by drought. The CO(2) compensation concentrations of P. coloratum and C. ciliaris rose sharply when leaf RWC fell below 70%. In P. coloratum, 5% CO(2) did not prevent the decline of O(2) evolution rates under water stress. We conclude that inhibition of photosynthesis in the four C(4) grasses under water stress is dependent mainly on biochemical limitations

    ROS-related redox regulation and signaling in plants

    Get PDF
    As sessile oxygenic organisms with a plastic developmental programme, plants are uniquely positioned to exploit reactive oxygen species (ROS) as powerful signals. Plants harbor numerous ROS-generating pathways, and these oxidants and related redox-active compounds have become tightly embedded into plant function and development during the course of evolution. One dominant view of ROS-removing systems sees them as beneficial antioxidants battling to keep damaging ROS below dangerous levels. However, it is now established that ROS are a necessary part of subcellular and intercellular communication in plants and that some of their signaling functions require ROS-metabolizing systems. For these reasons, it is suggested that “ROS processing systems” would be a more accurate term than “antioxidative systems” to describe cellular components that are most likely to interact with ROS and, in doing so, transmit oxidative signals. Within this framework, our update provides an overview of the complexity and compartmentation of ROS production and removal. We place particular emphasis on the importance of ROS-interacting systems such as the complex cellular thiol network in the redox regulation of phytohormone signaling pathways that are crucial for plant development and defense against external threats
    • …
    corecore