2,635 research outputs found

    Time-resolved lidar fluorosensor for sea pollution detection

    Get PDF
    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described

    The effects of tidally induced disc structure on white dwarf accretion in intermediate polars

    Full text link
    We investigate the effects of tidally induced asymmetric disc structure on accretion onto the white dwarf in intermediate polars. Using numerical simulation, we show that it is possible for tidally induced spiral waves to propagate sufficiently far into the disc of an intermediate polar that accretion onto the central white dwarf could be modulated as a result. We suggest that accretion from the resulting asymmetric inner disc may contribute to the observed X-ray and optical periodicities in the light curves of these systems. In contrast to the stream-fed accretion model for these periodicities, the tidal picture predicts that modulation can exist even for systems with weaker magnetic fields where the magnetospheric radius is smaller than the radius of periastron of the mass transfer stream. We also predict that additional periodic components should exist in the emission from low mass ratio intermediate polars displaying superhumps.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    WD1953-011 - a magnetic white dwarf with peculiar field structure

    Get PDF
    We present H-alpha spectra of the magnetic white dwarf star WD1953-011 which confirm the presence of the broad Zeeman components corresponding to a field strength of about 500kG found by Maxted & Marsh (1999). We also find that the line profile is variable over a timescale of a day or less. The core of the H-alpha line also shows a narrow Zeeman triplet corresponding to a field strength of of about 100kG which appears to be almost constant in shape. These observations suggest that the magnetic field on WD1953-011 has a complex structure and that the star has a rotational period of hours or days which causes the observed variability of the spectra. We argue that neither an offset dipole model nor a double-dipole model are sufficient to explain our observations. Instead, we propose a two component model consisting of a high field region of magnetic field strength of about 500kG covering about 10% of the surface area of the star superimposed on an underlying dipolar field of mean field strength of about 70kG. Radial velocity measurements of the narrow Zeeman triplet show that the radial velocity is constant to within a few km/s so this star is unlikely to be a close binary.Comment: Accpeted for publication in MNRAS. 4 pages, 2 figure

    One-side forward-backward asymmetry at the LHC

    Full text link
    Forward-backward asymmetry AFBA_{\rm FB} is an essential observable to study the nature of coupling in the standard model and physics beyond the standard model, as shown at LEP and Tevatron. As a proton-proton collider, the LHC does not have the preferred direction contrary to her counterpart, namely, LEP and Tevatron. Therefore AFBA_{\rm FB} is not applicable at the LHC. However for the proton the momentum of valence quark is usually larger than that of the sea quark. Utilizing this feature we have defined a so-called one-side forward-backward asymmetry AOFBA_{\rm OFB} for the top quark pair production at LHC in the previous work. In this paper we extend our studies to the charged leptons and bottom quarks as the final states. Our numerical results show that at the LHC AOFBA_{\rm OFB} can be utilized to study the nature of the couplings once enough events are collected.Comment: 19 pages, 7 figures, 1 table, published versio

    Sense and sensitivity of double beta decay experiments

    Get PDF
    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m_bb. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a "physics-motivated range" (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and bb isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.Comment: 30 pages, 12 figures, 6 table

    Tests of the Standard Model with Low-Energy Neutrino Beams

    Get PDF
    We discuss the possibility of using future high--intensity low--energy neutrino beams for precision tests of the Standard Model. In particular we consider the determination of the electroweak mixing angle from elastic and quasi--elastic neutrino--nucleon scattering at a superbeam or β\beta--beam

    Statistical properties of stochastic 2D Navier-Stokes equations from linear models

    Full text link
    A new approach to the old-standing problem of the anomaly of the scaling exponents of nonlinear models of turbulence has been proposed and tested through numerical simulations. This is achieved by constructing, for any given nonlinear model, a linear model of passive advection of an auxiliary field whose anomalous scaling exponents are the same as the scaling exponents of the nonlinear problem. In this paper, we investigate this conjecture for the 2D Navier-Stokes equations driven by an additive noise. In order to check this conjecture, we analyze the coupled system Navier-Stokes/linear advection system in the unknowns (u,w)(u,w). We introduce a parameter λ\lambda which gives a system (uλ,wλ)(u^\lambda,w^\lambda); this system is studied for any λ\lambda proving its well posedness and the uniqueness of its invariant measure μλ\mu^\lambda. The key point is that for any λ0\lambda \neq 0 the fields uλu^\lambda and wλw^\lambda have the same scaling exponents, by assuming universality of the scaling exponents to the force. In order to prove the same for the original fields uu and ww, we investigate the limit as λ0\lambda \to 0, proving that μλ\mu^\lambda weakly converges to μ0\mu^0, where μ0\mu^0 is the only invariant measure for the joint system for (u,w)(u,w) when λ=0\lambda=0.Comment: 23 pages; improved versio

    GCRT J1745-3009 as a Transient White Dwarf Pulsar

    Full text link
    A transient radio source in the direction of the Galactic Center, GCRT J1745-3009, exhibited 5 peculiar consecutive outbursts at 0.33 GHz with a period of 77.13 minutes and a duration of ~10 minutes for each outburst. It has been claimed to be the prototype of a hitherto unknown class of transient radio sources. We interpret it as a transient white dwarf pulsar with a period of 77.13 minutes. The ~10-minute flaring duration corresponds to the epoch when the radio beam sweeps our line of sight. The bursting epoch corresponds to the episodes when stronger sunspot-like magnetic fields emerge into the white dwarf polar cap region during which the pair production condition is satisfied and the white dwarf behaves like a radio pulsar. It switches off as the pair production condition breaks down.Comment: minor changes, ApJL, in pres

    Evaluation of Breaking Force of Different Suture Materials Used in Dentistry: An In Vitro Mechanical Comparison

    Get PDF
    The success of surgical procedures is strictly related to the biomechanical properties of the suture. Mechanical comparisons are scarcely reported in the literature, so the purpose of the present study was to evaluate and compare the mechanical behavior of different sutures commonly used in oral surgery in terms of traction resistance. Sutures made of eight different materials were analyzed: silk (S), polyglycolide-co-caprolactone (PGCL), polypropylene (PP), rapid polyglycolide (rPGA), standard polyglycolide (PGA), polyamide (PA), polyester (PE), and polyvinylidene fluoride (PVDF). For each material, three different sizes were tested: 3-0, 4-0, and 5-0. The breaking force of each suture was assessed with a uniaxial testing machine after being immersed in artificial saliva at 37\u25e6 C. The outcomes analyzed were the breaking force, the needle\u2013thread detachment breaking-point and the node response after forward\u2013reverse\u2013forward (FRF) tying when subjected to a tensile force. The 3-0 rPGA provided the maximum resistance, while the lowest value was recorded for the 5-0 PGCL. In general, 3-0 and 4-0 gauges showed non-statistically significant differences in terms of needle\u2013thread detachment. The highest needle\u2013thread detachment was found for the 3-0 PGA, whereas the lowest value was observed for the 5-0 PGCL. After tying the knot with an FRF configuration, the thread that showed the highest resistance to tension was the 3/0 silk, while the thread with the lowest resistance was the 5/0 silk. These data should be considered so that the operator is aware of as many aspects as possible on the behavior of various materials to ensure successful healing
    corecore