11,097 research outputs found
Utilizing Skylab data in on-going resources management programs in the state of Ohio
The author has identified the following significant results. The use of Skylab imagery for total area woodland surveys was found to be more accurate and cheaper than conventional surveys using aerial photo-plot techniques. Machine-aided (primarily density slicing) analyses of Skylab 190A and 190B color and infrared color photography demonstrated the feasibility of using such data for differentiating major timber classes including pines, hardwoods, mixed, cut, and brushland providing such analyses are made at scales of 1:24,000 and larger. Manual and machine-assisted image analysis indicated that spectral and spatial capabilities of Skylab EREP photography are adequate to distinguish most parameters of current, coal surface mining concern associated with: (1) active mining, (2) orphan lands, (3) reclaimed lands, and (4) active reclamation. Excellent results were achieved when comparing Skylab and aerial photographic interpretations of detailed surface mining features. Skylab photographs when combined with other data bases (e.g., census, agricultural land productivity, and transportation networks), provide a comprehensive, meaningful, and integrated view of major elements involved in the urbanization/encroachment process
Impurity assisted nanoscale localization of plasmonic excitations in graphene
The plasmon modes of pristine and impurity doped graphene are calculated,
using a real-space theory which determines the non-local dielectric response
within the random phase approximation. A full diagonalization of the
polarization operator is performed, allowing the extraction of all its poles.
It is demonstrated how impurities induce the formation of localized modes which
are absent in pristine graphene. The dependence of the spatial modulations over
few lattice sites and frequencies of the localized plasmons on the electronic
filling and impurity strength is discussed. Furthermore, it is shown that the
chemical potential and impurity strength can be tuned to control target
features of the localized modes. These predictions can be tested by scanning
tunneling microscopy experiments.Comment: 5 pages, 4 figure
The saturation assumption yields optimal convergence of two-level adaptive BEM
We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates
QCD Tests of the Puzzling Scalar Mesons
Motivated by several recent data, we test the QCD spectral sum rules (QSSR)
predictions based on different proposals (\bar qq, \bar q\bar q qq, and
gluonium) for the nature of scalar mesons. In the I=1 and 1/2 channels, the
unusual (wrong) splitting between the a_0(980) and \kappa(900) and the a_0(980)
width can be understood from QSSR within a \bar qq assignement. However, none
of the \bar qq and \bar q\bar q qq results can explain the large \kappa width,
which may suggest that it can result from a strong interference with
non-resonant backgrounds. In the I=0 channel, QSSR and some low-energy theorems
(LET) require the existence of a low mass gluonium \sigma_B(1 GeV) coupled
strongly to Goldstone boson pairs which plays in the U(1)_V channel, a similar
role than the \eta' for the value of the U(1)_A topological charge. The
observed \sigma(600) and f_0(980) mesons result from a maximal mixing between
the gluonium \sigma_B and \bar qq(1 GeV) mesons, a mixing scheme which passes
several experimental tests. OZI violating J/\psi--> \phi\pi^+\pi^-, D_s--> 3\pi
decays and J/\psi--> \gamma S glueball filter processes may indicate that most
of the I=0 mesons above 1 GeV have important gluonium in their wave functions.
We expect that the f_0(1500), f_0(1710) and f_0(1790) have significant gluonium
component in their wave functions, while the f_0(1370) is mostly \bar qq. Tests
of these results can be provided by the measurements of the pure gluonium
\eta'\eta and 4\pi specific U(1)_A decay channels.Comment: Version to appear in Phys. Rev. D (one previous figure corrupted
Relativistic and retardation effects in the two--photon ionization of hydrogen--like ions
The non-resonant two-photon ionization of hydrogen-like ions is studied in
second-order perturbation theory, based on the Dirac equation. To carry out the
summation over the complete Coulomb spectrum, a Green function approach has
been applied to the computation of the ionization cross sections. Exact
second-order relativistic cross sections are compared with data as obtained
from a relativistic long-wavelength approximation as well as from the scaling
of non-relativistic results. For high-Z ions, the relativistic wavefunction
contraction may lower the two-photon ionization cross sections by a factor of
two or more, while retardation effects appear less pronounced but still give
rise to non-negligible contributions.Comment: 6 pages, 2 figure
Long range correlations in DNA : scaling properties and charge transfer efficiency
We address the relation between long range correlations and charge transfer
efficiency in aperiodic artificial or genomic DNA sequences. Coherent charge
transfer through the HOMO states of the guanine nucleotide is studied using the
transmission approach, and focus is made on how the sequence-dependent
backscattering profile can be inferred from correlations between base pairs.Comment: Submitted to Phys. Rev. Let
The Impact of MicroRNAs on Brain Aging and Neurodegeneration
The molecular instructions that govern gene expression regulation are encoded in the genome and ultimately determine the morphology and functional specifications of the human brain. As a consequence, changes in gene expression levels might be directly related to the functional decline associated with brain aging. Small noncoding RNAs, including miRNAs, comprise a group of regulatory molecules that modulate the expression of hundred of genes which play important roles in brain metabolism. Recent comparative studies in humans and nonhuman primates revealed that miRNAs regulate multiple pathways and interconnected signaling cascades that are the basis for the cognitive decline and neurodegenerative disorders during aging. Identifying the roles of miRNAs and their target genes in model organisms combined with system-level studies of the brain would provide more comprehensive understanding of the molecular basis of brain deterioration during the aging process
- …