5,604 research outputs found
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells
Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks
Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs
On the -log-convexity conjecture of Sun
In his study of Ramanujan-Sato type series for , Sun introduced a
sequence of polynomials as given by
and he conjectured that the polynomials are -log-convex. By
imitating a result of Liu and Wang on generating new -log-convex sequences
of polynomials from old ones, we obtain a sufficient condition for determining
the -log-convexity of self-reciprocal polynomials. Based on this criterion,
we then give an affirmative answer to Sun's conjecture
Linking engagement and performance: The social network analysis perspective
Theories developed by Tinto and Nora identify academic performance, learning
gains, and involvement in learning communities as significant facets of student
engagement that, in turn, support student persistence. Collaborative learning
environments, such as those employed in the Modeling Instruction introductory
physics course, provide structure for student engagement by encouraging
peer-to-peer interactions. Because of the inherently social nature of
collaborative learning, we examine student interactions in the classroom using
network analysis. We use centrality---a family of measures that quantify how
connected or "central" a particular student is within the classroom
network---to study student engagement longitudinally. Bootstrapped linear
regression modeling shows that students' centrality predicts future academic
performance over and above prior GPA for three out of four centrality measures
tested. In particular, we find that closeness centrality explains 28 % more of
the variance than prior GPA alone. These results confirm that student
engagement in the classroom is critical to supporting academic performance.
Furthermore, we find that this relationship for social interactions does not
emerge until the second half of the semester, suggesting that classroom
community develops over time in a meaningful way
The -log-convexity of Domb's polynomials
In this paper, we prove the -log-convexity of Domb's polynomials, which
was conjectured by Sun in the study of Ramanujan-Sato type series for powers of
. As a result, we obtain the log-convexity of Domb's numbers. Our proof is
based on the -log-convexity of Narayana polynomials of type and a
criterion for determining -log-convexity of self-reciprocal polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:1308.273
Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field
The temperature-dependent electron spin relaxation of positively charged
excitons in a single InAs quantum dot (QD) was measured by time-resolved
photoluminescence spectroscopy at zero applied magnetic fields. The
experimental results show that the electron-spin relaxation is clearly divided
into two different temperature regimes: (i) T < 50 K, spin relaxation depends
on the dynamical nuclear spin polarization (DNSP) and is approximately
temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K,
spin relaxation speeds up with increasing temperature. A model of two LO phonon
scattering process coupled with hyperfine interaction is proposed to account
for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure
Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor
Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4
nano-particle carbon powder were prepared using an in-situ reaction method
under well controlled conditions to limit the extent of C substitution. The
phases, lattice parameters, microstructures, superconductivity and flux pinning
were characterized by XRD, TEM, and magnetic measurements. It was found that
both the a-axis lattice parameter and the Tc decreased monotonically with
increasing doping level. For the sample doped with the highest nominal
composition of x=0.4 the Tc dropped only 2.7K. The nano-C-doped samples showed
an improved field dependence of the Jc compared with the undoped sample over a
wide temperature range. The enhancement by C-doping is similar to that of
Si-doping but not as strong as for nano-SiC doped MgB2. X-ray diffraction
results indicate that C reacted with Mg to form nano-size Mg2C3 and MgB2C2
particles. Nano-particle inclusions and substitution, both observed by
transmission electron microscopy, are proposed to be responsible for the
enhancement of flux pinning in high fields.Comment: 9 pages, 12 figure
- …
