521 research outputs found

    Constructing Identity Through the Lens of Fashion: An Honors Thesis

    Get PDF
    Fashion is an artistic decision that every person makes every day. Even those who say they don’t care about clothing are still portraying something about themselves to the outside world with the stylistic choices they make. This creative Honors Thesis explores the impact of fashion on self-representation, accomplished through the design and construction of a capsule wardrobe line of clothing. Due to the project’s personal and introspective nature, the intended wearer is the artist, and therefore the pieces are specifically tailored to her, rather than the straight sized garments that are typically produced in the fashion industry. This line consists of multiple pieces, each addressing a particular event or situation, in which ostensible expectations for dress conflict with what the wearer feels most authentically represented in. Examples include a high fashion take on a winter coat, a pink version of a ladies business suit, and more. The project’s goal, through the artist’s experience and sharing of this work, is to encourage viewers to reconsider fashion and the ways it impacts each of us inside and out, including their own personal style, the ways they feel they must conform, and how they can use fashion to feel more authentic and confident in themselves

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio

    Anisotropic states of two-dimensional electrons in high magnetic fields

    Full text link
    We study the collective states formed by two-dimensional electrons in Landau levels of index n≥2n\ge 2 near half-filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2q^{3/2} as in an ordinary Wigner crystal, and not like q5/2q^{5/2} as was found in previous studies where the energy of shear deformations was neglected.Comment: minor corrections; 5 pages, 4 figures; version to be published in Physical Review Letter

    The metallic transport of (TMTSF)_2X organic conductors close to the superconducting phase

    Full text link
    Comparing resistivity data of quasi-one dimensional superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 along the least conducting c*-axis and along the high conductivity a -axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles DFT calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for rc a temperature dependence aT + bT^2. Taking into account the strong pressure dependence of the anisotropy, the T-linear rc is found to correlate with the suppression of the superconducting Tc, in close analogy with ra data. This work is revealing the domain of existence of the 3D coherent regime in the generic (TMTSF)_2X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors

    Optical Diagnostics of Switching Arcs Near Current-zero: Speckle Imaging and Interferometry

    Get PDF
    Optical diagnostics can be used to obtain spatially resolved measurements of the density, temperature, conductivity, and electron density of circuit breaker arcs embedded in transonic flows; these can be used to validate the results of simulations, the accuracy of which can currently be assessed in only a limited way. We compare speckle imaging and an interferometric approach. Both use a pulsed nanosecond laser. The speckle imaging setup does not require a reference beam, but only yields information about the gradient of the refractive index. Its accuracy is sensitive to the alignment of the optical components. Interferometry directly yields high resolution images of the index of refraction, from which the density can be calculated using the Gladstone-Dale relation. By using two laser beams, interferometry provides spatially resolved information about the electron density. Such measurements are a significant step towards more accurate CFD models

    Nodes in the gap structure of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 from c-axis heat transport measurements

    Full text link
    The thermal conductivity k of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 was measured down to 50 mK for a heat current parallel (k_c) and perpendicular (k_a) to the tetragonal c axis, for seven Co concentrations from underdoped to overdoped regions of the phase diagram (0.038 < x < 0.127). A residual linear term k_c0/T is observed in the T = 0 limit when the current is along the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away from the concentration of maximal T_c, they must be accidental, not imposed by symmetry, and are therefore compatible with an s_{+/-} state, for example. The fact that the in-plane residual linear term k_a0/T is negligible at all x implies that the nodes are located in regions of the Fermi surface that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of a moderate magnetic field (e.g. H_c2/4) excites quasiparticles that conduct heat along the a axis just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be very small (but non-zero) in regions of the Fermi surface which contribute significantly to in-plane conduction. These findings can be understood in terms of a strong k dependence of the gap Delta(k) which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and deep minima on the remaining, quasi-two-dimensional sheets.Comment: 12 pages, 13 figures
    • …
    corecore