1,851 research outputs found

    Observation of lobes near the X-point in resonant magnetic perturbation experiments on MAST

    Full text link
    The application of non-axisymmetric resonant magnetic perturbations (RMPs) with a toroidal mode number n=6 in the MAST tokamak produces a significant reduction in plasma energy loss associated with type-I Edge Localized Modes (ELMs), the first such observation with n>3. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. These lobes or manifold structures, that were predicted previously, have been observed for the first time in a range of discharges and their appearance is correlated with the effect of RMPs on the plasma i.e. they only appear above a threshold when a density pump out is observed or when the ELM frequency is increased. They appear to be correlated with the RMPs penetrating the plasma and may be important in explaining why the ELM frequency increases. The number and location of the structures observed can be well described using vacuum modelling. Differences in radial extent and poloidal width from vacuum modelling are likely to be due to a combination of transport effects and plasma screening.Comment: 15 pages, 5 figure

    Physical renormalization condition for the quark-mixing matrix

    Full text link
    We investigate the renormalization of the quark-mixing matrix in the Electroweak Standard Model. We show that the corresponding counterterms must be gauge independent as a consequence of extended BRS invariance. Using rigid SU(2)_L symmetry, we proof that the ultraviolet-divergent parts of the invariant counterterms are related to the field renormalization constants of the quark fields. We point out that for a general class of renormalization schemes rigid SU(2)_L symmetry cannot be preserved in its classical form, but is renormalized by finite counterterms. Finally, we discuss a genuine physical renormalization condition for the quark-mixing matrix that is gauge independent and does not destroy the symmetry between quark generations.Comment: 20 pages, LaTeX, minor changes, references adde

    Electroweak-correction effects in gauge-boson pair production at the LHC

    Get PDF
    We have studied the effect of one-loop logarithmic electroweak radiative corrections on WZ and WγW\gamma production processes at the LHC. We present analytical results for the leading-logarithmic electroweak corrections to the corresponding partonic processes du -> WZ, Wgamma. Using the leading-pole approximation we implement these corrections into Monte Carlo programs for pplνlllˉ,lνlγpp\to l\nu_l l'\bar l', l\nu_l\gamma. We find that electroweak corrections lower the predictions by 5-20% in the physically interesting region of large transverse momentum and small rapidity separation of the gauge bosons.Comment: 28 pages, LaTex, 13 eps figures included; references added and corrected typo

    Feynman rules for the rational part of the Electroweak 1-loop amplitudes

    Get PDF
    We present the complete set of Feynman rules producing the rational terms of kind R_2 needed to perform any 1-loop calculation in the Electroweak Standard Model. Our results are given both in the 't Hooft-Veltman and in the Four Dimensional Helicity regularization schemes. We also verified, by using both the 't Hooft-Feynman gauge and the Background Field Method, a huge set of Ward identities -up to 4-points- for the complete rational part of the Electroweak amplitudes. This provides a stringent check of our results and, as a by-product, an explicit test of the gauge invariance of the Four Dimensional Helicity regularization scheme in the complete Standard Model at 1-loop. The formulae presented in this paper provide the last missing piece for completely automatizing, in the framework of the OPP method, the 1-loop calculations in the SU(3) X SU(2) X U(1) Standard Model.Comment: Many thanks to Huasheng Shao for having recomputed, independently of us, all of the R2{\rm R_2} effective vertices. Thanks to his help and by comparing with an independent computation we performed in a general RξR_\xi gauge, we could fix, in the present version, the following formulae: the vertex AllˉA l \bar l in Eq. (3.6), the vertex Zϕ+ϕZ \phi^+ \phi^- in Eq. (3.8), Eqs (3.16), (3.17) and (3.18

    Charged Higgs Production in the 1 TeV Domain as a Probe of Supersymmetric Models

    Get PDF
    We consider the production, at future lepton colliders, of charged Higgs pairs in supersymmetric models. Assuming a relatively light SUSY scenario, and working in the MSSM, we show that, for c.m. energies in the one TeV range, a one-loop logarithmic Sudakov expansion that includes an "effective" next-to subleading order term is adequate to the expected level of experimental accuracy. We consider then the coefficient of the linear (subleading) SUSY Sudakov logarithm and the SUSY next to subleading term of the expansion and show that their dependence on the supersymmetric parameters of the model is drastically different. In particular the coefficient of the SUSY logarithm is only dependent on tanβ\tan\beta while the next to subleading term depends on a larger set of SUSY parameters. This would allow to extract from the data separate informations and tests of the model.Comment: 18 pages and 13 figures e-mail: [email protected]

    High energy behaviour of gamma gamma to f f(bar) processes in SM and MSSM

    Full text link
    We compute the leading logarithms electroweak contributions to gamma gamma to f f(bar) processes in SM and MSSM. Several interesting properties are pointed out, such as the importance of the angular dependent terms, of the Yukawa terms, and especially of the tan2β\tan^2\beta dependence in the SUSY contributions. These properties are complementary to those found in e+e- to f f(bar). These radiative correction effects should be largely observable at future high energy gamma gamma colliders. Polarized beams would bring interesting checks of the structure of the one loop corrections. We finally discuss the need for two-loop calculations and resummation.Comment: 22 pages and 12 figures. e-mail: [email protected]

    Near-threshold boson pair production in the model of smeared-mass unstable particles

    Full text link
    Near-threshold production of boson pairs is considered within the framework of the model of unstable particles with smeared mass. We describe the principal aspects of the model and consider the strategy of calculations including the radiative corrections. The results of calculations are in good agreement with LEP II data and Monte-Carlo simulations. Suggested approach significantly simplifies calculations with respect to the standard perturbative one.Comment: 15 pages, 6 figures, minor corrections, references adde

    Gauge-independent MS\overline{MS} renormalization in the 2HDM

    Get PDF
    We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on MS\overline{MS} renormalization of the mixing angles and the soft-Z2Z_2-symmetry-breaking scale MsbM_{sb} in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all steps of the calculation in order to provide gauge-independent SS-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general RξR_{\xi}-gauge. The procedure is straightforward and applicable to other models with extended Higgs sectors. In contrast to the proposed scheme, the MS\overline{MS} renormalization of the mixing angles combined with popular on-shell renormalization schemes gives rise to gauge-dependent results already at the one-loop level. We present explicit results for electroweak NLO corrections to selected processes in the appropriately renormalized Two-Higgs-Doublet Model and in particular discuss their scale dependence.Comment: 52 pages, PDFLaTeX, PDF figures, JHEP version with Eq. (5.23) correcte

    Single Neutralino production at CERN LHC

    Full text link
    The common belief that the lightest supersymmetric particle (LSP) might be a neutralino, providing also the main Dark Matter (DM) component, calls for maximal detail in the study of the neutralino properties. Motivated by this, we consider the direct production of a single neutralino \tchi^0_i at a high/energy hadron collider, focusing on the \tchi^0_1 and \tchi^0_2 cases. At Born level, the relevant subprocesses are q\bar q\to \tchi^0_i \tilde g, g q\to \tchi^0_i \tilde q_{L,R} and q\bar q'\to \tchi^0_i\tchi^\pm_j; while at 1-loop, apart from radiative corrections to these processes, we consider also gg\to \tchi^0_i\tilde{g}, for which a numerical code named PLATONgluino is released. The relative importance of these channels turns out to be extremely model dependent. Combining these results with an analogous study of the direct \tchi^0_i\tchi^0_j pair production, should help in testing the SUSY models and the Dark Matter assignment.Comment: 22 pages and 12 figures; version to appear in Phys.Rev.

    Electroweak corrections to W-boson pair production at the LHC

    Get PDF
    Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on \gamma\gamma -> WW added; matches version published in JHE
    corecore