17 research outputs found

    Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud Recomendaciones basadas en consenso de expertos e informadas en la evidencia

    Get PDF
    The “Asociación Colombiana de Infectología” (ACIN) and the “Instituto de Evaluación de Nuevas Tecnologías de la Salud” (IETS) created a task force to develop recommendations for Covid 19 health care diagnosis, management and treatment informed, and based, on evidence. Theses reccomendations are addressed to the health personnel on the Colombian context of health services. © 2020 Asociacion Colombiana de Infectologia. All rights reserved

    Behavioural differences between Aphidius ervi populations from two tritrophic systems are due to phenotypic plasticity

    No full text
    Fuentes-Contreras, E. and Reyes, M. Departmento de Producción, Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile.The Palaeoarctic parasitoid Aphidius ervi Haliday (Hymenoptera, Aphidiidae) parasitises legume aphids in its region of origin. In Chile, it parasitises both legume and cereal aphids. This special situation was studied at two levels: (i) the host searching behaviour of A. ervi from two different tritrophic systems (Acyrthosiphon pisum on alfalfa and Sitobion avenae on wheat) was investigated in dual choice tests in a wind tunnel between odours from both A. pisum-alfalfa host plant complex (HPC) and S. avenae-wheat HPC, and (ii) the genetic structure of A. ervi populations from both sources using molecular markers. Responses of A. ervi females to volatile olfactory cues emanating from A. pisum-alfalfa HPC and S. avenae-wheat HPC were significantly higher towards the HPC on which they were reared during the last generation before experimentation, regardless of the origin of the parasitoid. As previously described for this parasitoid species, oviposition experience was also of major relevance in the preferences of female parasitoids. On the other hand, variation in mitochondrial DNA segments and RAPD-PCR polymorphism using total DNA showed the absence of host-based population structure and a high genetic homogeneity between these A. ervi populations. These results reject the possible existence of different host-strains of this parasitoid in Chile

    Behavioural differences between Aphidius ervi populations from two tritrophic systems are due to phenotypic plasticity

    No full text
    The Palaeoarctic parasitoid Aphidius ervi Haliday (Hymenoptera, Aphidiidae) parasitises legume aphids in its region of origin. In Chile, it parasitises both legume and cereal aphids. This special situation was studied at two levels: (i) the host searching behaviour of A. ervi from two different tritrophic systems (Acyrthosiphon pisum on alfalfa and Sitobion avenae on wheat) was investigated in dual choice tests in a wind tunnel between odours from both A. pisum-alfalfa host plant complex (HPC) and S. avenae-wheat HPC, and (ii) the genetic structure of A. ervi populations from both sources using molecular markers. Responses of A. ervi females to volatile olfactory cues emanating from A. pisum-alfalfa HPC and S. avenae-wheat HPC were significantly higher towards the HPC on which they were reared during the last generation before experimentation, regardless of the origin of the parasitoid. As previously described for this parasitoid species, oviposition experience was also of major relev

    Fusion–fission experiments in Aphidius: evolutionary split without isolation in response to environmental bimodality

    No full text
    Studying host-based divergence naturally maintained by a balance between selection and gene flow can provide valuable insights into genetic underpinnings of host adaptation and ecological speciation in parasites. Selection-gene flow balance is often postulated in sympatric host races, but direct experimental evidence is scarce. In this study, we present such evidence obtained in host races of Aphidius ervi, an important hymenopteran agent of biological control of aphids in agriculture, using a novel fusion–fission method of gene flow perturbation. In our study, between-race genetic divergence was obliterated by means of advanced hybridisation, followed by a multi-generation exposure of the resulting genetically uniform hybrid swarm to a two-host environment. This fusion–fission procedure was implemented under two contrasting regimes of between-host gene flow in two replicated experiments involving different racial pairs. Host-based genetic fission in response to environmental bimodality occurred in both experiments in as little as six generations of divergent adaptation despite continuous gene flow. We demonstrate that fission recovery of host-based divergence evolved faster and hybridisation-induced linkage disequilibrium decayed slower under restricted (6.7%) compared with unrestricted gene flow, directly pointing at a balance between gene flow and divergent selection. We also show, in four separate tests, that random drift had no or little role in the observed genetic split. Rates and patterns of fission divergence differed between racial pairs. Comparative linkage analysis of these differences is currently under way to test for the role of genomic architecture of adaptation in ecology-driven divergent evolution

    The evolution of natural killer cell receptors

    No full text
    Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is "missing self" detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation
    corecore