253 research outputs found

    Late Onset Neuromyelitis Optica Spectrum Disorders (LONMOSD) from a Nationwide Portuguese Study: Anti-AQP4 Positive, Anti-MOG Positive and Seronegative Subgroups

    Get PDF
    Introduction: Several neuroimmunological disorders have distinct phenotypes according to the age of onset, as in multiple sclerosis or myasthenia gravis. It is also described that late onset NMOSD (LONMOSD) has a different phenotype. Objective: To describe the clinical/demographic characteristics of the LONMOSD and distinguish them from those with early onset (EONMOSD). Methods: From a nationwide Portuguese NMOSD study we analyzed the clinical/demographic characteristics of the LONMOSD. Results: From the 180 Portuguese patients 45 had disease onset after 50 years old, 80% were female. 23 had anti-AQP4 antibodies (51.1%), 13 anti-MOG antibodies (28.9%) and 9 were double seronegative (20.0%). The most common presenting phenotypes in LONMOSD were transverse myelitis (53.3%) and optic neuritis (26.7%), without difference from EONMOSD (p = 0.074). The mean EDSS for LONMOSD was 6.0 (SD=2.8), after a mean follow-up time of 4.58 (SD=4.47) years, which was significantly greater than the mean EDSS of EONMOSD (3.25, SD=1.80)(p = 0.022). Anti-AQP4 antibodies positive LONMOSD patients had increased disability compared to anti-MOG antibodies positive LONMOSD (p = 0.022). The survival analysis showed a reduced time to use a cane for LONMOSD, irrespective of serostatus (p<0.001). Conclusions: LONMOSD has increased disability and faster progression, despite no differences in the presenting clinical phenotype were seen in our cohort.info:eu-repo/semantics/publishedVersio

    Progress in analytical approaches integrating Livestock and Biodiversity to identify HNV Montados

    Get PDF
    The World Congress Silvo-Pastoral Systems 2016 aims to gather researchers from different disciplines, practitioners and policy makers at different governance levels that deal with the management and sustainability of silvo-pastoral systems. In this way the congress will create a fertile context to progress through interdisciplinarity research approaches that can help translate scientific knowledge into new adaptive management solutions, and thus bridge from science to practice. The aim is also to gather and compare knowledge from silvo-pastoral systems around the world, which share drought as a limiting factor, so that they can be discussed and evaluated

    Impairment of Adenosinergic System in Rett syndrome: Novel Therapeutic Target to Boost BDNF Signalling

    Get PDF
    Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.info:eu-repo/semantics/publishedVersio

    Mesial Temporal Lobe Epilepsy (MTLE) Drug-Refractoriness Is Associated With P2X7 Receptors Overexpression in the Human Hippocampus and Temporal Neocortex and May Be Predicted by Low Circulating Levels of miR-22

    Get PDF
    Objective: ATP-gated ionotropic P2X7 receptors (P2X7R) actively participate in epilepsy and other neurological disorders. Neocortical nerve terminals of patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) express higher P2X7R amounts. Overexpression of P2X7R bolsters ATP signals during seizures resulting in glial cell activation, cytokines production, and GABAergic rundown with unrestrained glutamatergic excitation. In a mouse model of status epilepticus, increased expression of P2X7R has been associated with the down-modulation of the non-coding micro RNA, miR-22. MiR levels are stable in biological fluids and normally reflect remote tissue production making them ideal disease biomarkers. Here, we compared P2X7R and miR-22 expression in epileptic brains and in the serum of patients with MTLE-HS, respectively. Methods: Quantitative RT-PCR was used to evaluate the expression of P2X7R in the hippocampus and anterior temporal lobe of 23 patients with MTLE-HS and 10 cadaveric controls. Confocal microscopy and Western blot analysis were performed to assess P2X7R protein amounts. MiR-22 expression was evaluated in cell-free sera of 40 MTLE-HS patients and 48 healthy controls. Results: Nerve terminals of the hippocampus and neocortical temporal lobe of MTLE-HS patients overexpress (p 3) anti-epileptic drug (AED) regimens. Conclusion: Data show that there is an inverse relationship between miR-22 serum levels and P2X7R expression in the hippocampus and neocortex of MTLE-HS patients, which implies that measuring serum miR-22 may be a clinical surrogate of P2X7R brain expression in the MTLE-HS. Moreover, the high area under the ROC curve (0.777; 95% CI 0.629-0.925; p = 0.001) suggests that low miR-22 serum levels may be a sensitive predictor of poor response to AEDs among MTLE-HS patients. Results also anticipate that targeting the miR-22/P2X7R axis may be a good strategy to develop newer AEDs.This research was partial funded by a BICE Tecnifar Grant. The work performed in PC-S’s Lab was partially supported by UP/Santander Totta and Fundação para a Ciência e Tecnologia (FCT, POCTI PTDC/SAU-PUB/28311/2017—EPIRaft grant and Fundo Europeu de Desenvolvimento Regional—FEDER funding and COMPETE—MedInUP projects Pest-OE/SAU/UI215/2014, UID/BIM/4308/2016, UIDB/04308/2020 and UIDP/04308/2020). Unit for Multidisciplinary Research in Biomedicine (UMIB) is funded by the Foundation for Science and Technology (FCT) Portugal (grant numbers UIDB/00215/2020 and UIDP/00215/2020) and ITR—Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020). RM-F was in receipt of an FCT PhD studentship (SFRH/BD/137900/2018).info:eu-repo/semantics/publishedVersio

    Progress in Identifying High Nature Value Montados: Impacts of Grazing on Hardwood Rangeland Biodiversity

    Get PDF
    Due to their complex structure and traditional low-intensity management, Portuguese oak woodland rangelands known as montados are often considered high nature value (HNV) farming systems, and as such, they may be deemed eligible for subsidies and incentives by governmental and nongovernmental agencies. Too little is known about how the HNV concept might be applied to conserve complex silvopastoral systems. These systems, due to their structural and functional complexity at multiple scales, tend to support high levels of biodiversity. Montados are in sharp decline as a result of the rapid specialization of land management that, through simplification, undermines multifunctionality. Understanding how changes in management influence these systems and their biodiversity is needed for prioritizing conservation efforts and for ensuring they remain HNV systems. On the basis of a field survey in 58 plots distributed among 29 paddocks on 17 farms, we conducted an integrated analysis of the relationship between grazing intensity and biodiversity in montados of similar biophysical and structural characteristics. Data on management were obtained through interviews, and biodiversity data (vegetation, macrofungi, birds, herpetofauna) were obtained through specific field protocols. Additional spatial data, such as soil characteristics, slope, land cover, and linear landscape elements, were also analyzed. The results show no overall biodiversity variation as a result of different management practices. However, different groups of species react differently to specific management practices, and within a pasture, grazing impacts are heterogenous. In low grazing intensity plots, macrofungi species richness was found to be higher, while bird species richness was lower. Using tree regeneration as proxy for montado sustainability, results show less tree regeneration in areas with higher forage quality and more intense grazing. Pathways for future progress are proposed, including creating areas within a paddock that attract grazing away from where regeneration is desired

    Fungicide-Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea

    Get PDF
    The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR) caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1) that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of current strategies for fungicide resistance management

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different
    corecore