44 research outputs found

    Assessment of Lentiviral Vector Mediated CFTR Correction in Mice Using an Improved Rapid in vivo Nasal Potential Difference Measurement Protocol

    Get PDF
    Cystic Fibrosis (CF) is caused by a defect in the CF transmembrane conductance regulator (CFTR) gene responsible for epithelial ion transport. Nasal potential difference (PD) measurement is a well established diagnostic technique for assessing the efficacy of therapies in CF patients and animal models. The aim was to establish a rapid nasal PD protocol in mice and quantify the efficacy of lentiviral (LV) vector-based CFTR gene therapy. Anaesthetised wild-type (WT) and CF mice were non-surgically intubated and nasal PD measurements were made using a range of buffer flow rates. Addition of the cAMP agonist, isoproterenol, to the buffer sequence was then examined. The optimised rapid PD technique was then used to assess CFTR function produced by second and third generation LV-CFTR vectors. V5 epitope tagged-CFTR in nasal tissue was identified by immunohistochemistry. When intubated, mice tolerated higher flow rates. Isoproterenol could discriminate between WT and CF mice. Improved chloride transport was observed for the second and third generation LV-CFTR vectors, with up to 60% correction of the cAMP-driven chloride response towards WT. V5-CFTR was located in ciliated epithelial cells. The rapid PD technique enables improved functional assessment of the bioelectrical ion transport defect for both current and potential CF therapies.P. Cmielewski, J. Delhove, M. Donnelley, and D. Parson

    To bead or not to bead: A review of Pseudomonas aeruginosa lung infection models for cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) lung disease is characterised by recurring bacterial infections resulting in inflammation, lung damage and ultimately respiratory failure. Pseudomonas aeruginosa is considered one of the most important lung pathogens in those with cystic fibrosis. While multiple cystic fibrosis animal models have been developed, many fail to mirror the cystic fibrosis lung disease of humans, including the colonisation by opportunistic environmental pathogens. Delivering bacteria to the lungs of animals in different forms is a way to model cystic fibrosis bacterial lung infections and disease. This review presents an overview of previous models, and factors to consider when generating a new P. aeruginosa lung infection model. The future development and application of lung infection models that more accurately reflect human cystic fibrosis lung disease has the potential to assist in understanding the pathophysiology of cystic fibrosis lung disease and for developing treatments.Nicole Reyne, Alexandra McCarron, Patricia Cmielewski, David Parsons, and Martin Donnelle

    Airway gene transfer in a non-human primate: Lentiviral gene expression in marmoset lungs

    Get PDF
    Genetic therapies for cystic fibrosis (CF) must be assessed for safety and efficacy, so testing in a non-human primate (NHP) model is invaluable. In this pilot study we determined if the conducting airways of marmosets (n 5 2) could be transduced using an airway pre-treatment followed by an intratracheal bolus dose of a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector (LacZ reporter). LacZ gene expression (X-gal) was assessed after 7 days and found primarily in conducting airway epithelia as well as in alveolar regions. The LacZ gene was not detected in liver or spleen via qPCR. Vector p24 protein bio-distribution into blood was transient. Dosing was well tolerated. This preliminary study confirmed the transducibility of CF-relevant airway cell types. The marmoset is a promising NHP model for testing and translating genetic treatments for CF airway disease towards clinical trials.N. Farrow, D. Miller, P. Cmielewski, M. Donnelley, R. Bright and D.W. Parson

    Breaching the delivery barrier: Chemical and physical airway epithelium disruption strategies for enhancing lentiviral-mediated gene therapy

    Get PDF
    Published: 26 April 2021The lungs have evolved complex physical, biological and immunological defences to prevent foreign material from entering the airway epithelial cells. These mechanisms can also affect both viral and non-viral gene transfer agents, and significantly diminish the effectiveness of airway gene-addition therapies. One strategy to overcome the physical barrier properties of the airway is to transiently disturb the integrity of the epithelium prior to delivery of the gene transfer vector. In this study, chemical (lysophosphatidylcholine, LPC) and physical epithelium disruption using wire abrasion were compared for their ability to improve airway-based lentiviral (LV) vector mediated transduction and reporter gene expression in rats. When luciferase expression was assessed at 1-week post LV delivery, LPC airway conditioning significantly enhanced gene expression levels in rat lungs, while a long-term assessment in a separate cohort of rats at 12 months revealed that LPC conditioning did not improve gene expression longevity. In rats receiving physical perturbation to the trachea prior to gene delivery, significantly higher LacZ gene expression levels were found when compared to LPC-conditioned or LV-only control rats when evaluated 1-week post gene transfer. This proof-of-principle study has shown that airway epithelial disruption strategies based on physical perturbation substantially enhanced LVmediated airway gene transfer in the trachea.Alexandra McCarron, Nigel Farrow, Patricia Cmielewski, Emma Knight, Martin Donnelley and David Parson

    Single-dose lentiviral mediated gene therapy recovers CFTR function in cystic fibrosis knockout rats

    Get PDF
    Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective ion transport in the airways. Addition of a functioning CFTR gene into affected airway cells has the potential to be an effective treatment for lung disease. The therapeutic efficacy of airway gene transfer can be quantified in animal models by assessing ion transport in the treated nasal epithelium using the nasal potential difference (PD) measurement technique. The nasal PD technique is routinely used in CF mice, however when applied to a recently developed CF rat model those animals did not tolerate the initial nasal PD assessment, therefore the procedure was firstly optimised in rats. This study evaluated the effect of lentiviral (LV)-mediated CFTR airway gene delivery on nasal PD in a CFTR knockout rat model. LV gene vector containing the CFTR gene tagged with a V5 epitope tag (LV-V5-CFTR) was delivered to the nasal epithelium of CF rats, and one week later nasal PD was analysed. This study demonstrated for the first time that LV-V5-CFTR treatment produced a mean correction of 46% towards wild-type chloride response in treated CF rats. Transduced cells were subsequently identifiable using V5 immunohistochemical staining. These findings in the nose validate the use of airway gene therapy for future lung based experiments.Nicole Reyne, Patricia Cmielewski, Alexandra McCarron, Juliette Delhove, David Parsons and Martin Donnelle

    Towards automated in vivo tracheal mucociliary transport measurement: detecting and tracking particle movement in synchrotron phase-contrast X-ray images

    Get PDF
    Accurate in vivo quantification of airway mucociliary transport (MCT) in animal models is important for understanding diseases such as cystic fibrosis, as well as for developing therapies. A non-invasive method of measuring MCT behaviour, based on tracking the position of micron sized particles using Synchrotron X-ray imaging, has previously been described. In previous studies, the location (and path) of each particle was tracked manually, which is a time consuming and subjective process. Here we describe particle tracking methods that were developed to reduce the need for manual particle tracking. The MCT marker particles were detected in the Synchrotron X-ray images using cascade classifiers. The particle trajectories along the airway surface were generated by linking the detected locations between frames using a modified particle linking algorithm. The developed methods were compared with the manual tracking method on simulated X-ray images, as well as on in vivo images of rat airways acquired at the SPring-8 Synchrotron. The results for the simulated and in vivo images showed that the semi-automatic algorithm reduced the time required for particle tracking when compared with the manual tracking method, and was able to detect MCT marker particle locations and measure particle speeds more accurately than the manual tracking method. Future work will examine the modification of methods to improve particle detection and particle linking algorithms to allow for more accurate fully-automatic particle tracking.Mark Gardner, David Parsons, Kaye Morgan, Alexandra McCarron, Patricia Cmielewski, Regine Gradl, and Martin Donnelle

    Transduction of ferret airway epithelia using a pre-treatment and lentiviral gene vector

    Get PDF
    BACKGROUND: The safety and efficiency of gene therapies for cystic fibrosis (CF) need to be assessed in pre-clinical models. Using the normal ferret, this study sought to determine whether ferret airway epithelia could be transduced with a lysophosphatidylcholine (LPC) pre-treatment followed by a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector, in preparation for future studies in CF ferrets. METHODS: Six normal ferrets (7 -8 weeks old) were treated with a 150 μL LPC pre-treatment, followed one hour later by a 500 μL LV vector dose containing the LacZ transgene. LacZ gene expression in the conducting airways and lung was assessed by X-gal staining after 7 days. The presence of transduction in the lung, as well as off-target transduction in the liver, spleen and gonads, were assessed by qPCR. The levels of LV vector p24 protein bio-distribution in blood sera were assessed by ELISA at 0, 1, 3, 5 and 7 days. RESULTS: The dosing protocol was well tolerated. LacZ gene expression was observed en face in the trachea of all animals. Histology showed that ciliated and basal cells were transduced in the trachea, with rare LacZ transduced single cells noted in lung. p24 levels was not detectable in the sera of 5 of the 6 animals. The LacZ gene was not detected in the lung tissue and no off-target transduction was detected by qPCR. CONCLUSIONS: This study shows that ferret airway epithelia are transducible using our unique two-step pre-treatment and LV vector dosing protocol. We have identified a number of unusual anatomical factors that are likely to influence the level of transduction that can be achieved in ferret airways. The ability to transduce ferret airway epithelium is a promising step towards therapeutic LV-CFTR testing in a CF ferret model.Patricia Cmielewski, Nigel Farrow, Martin Donnelley, Chantelle McIntyre, Jahan Penny-Dimri, Tim Kuchel and David Parson

    Repeat or single-dose lentiviral vector administration to mouse lungs? It’s all about the timing

    Get PDF
    Lentiviral vectors are attractive delivery vehicles for cystic fibrosis gene therapy owing to their low immunogenicity and ability to integrate into the host cell genome, thereby producing long-term, stable gene expression. Nonetheless, repeat dosing may be required to increase initial expression levels, and/or boost levels when they wane. The primary aim of this study was to determine if repeat dosing of a VSV-G pseudotyped LV vector delivered into mouse lungs is more effective than a single dose. C57Bl/6 mouse lungs were conditioned with lysophosphatidylcholine, followed one-hour later by a LV vector carrying the luciferase reporter gene, using six different short-term (≤1 wk) and long-term (>1 wk) dosing schedules. Luciferase expression was quantified using bioluminescence imaging over 12 months. Most dosing schedules produced detectable bioluminescence over the 12-month period, but the shorter intervals (≤1 wk) produced higher levels of flux than the longest interval (five doses at least 1-month apart). Ex vivo lung analysis at 12 months showed that the estimated mean flux for the group that received two doses 1-week apart was significantly greater than the single dose group and the two groups that received doses over a period greater than 1-week. These results suggest that early consecutive multiple doses are more effective at improving gene expression in mouse lungs at 12 months, than longer repeat dosing intervals.Martin Donnelley, Patricia Cmielewski, Emma Knight, Chantelle Carpentieri, Alexandra McCarron, Nathan Rout-Pitt, David Parsons, and Nigel Farro

    High-resolution mucociliary transport measurement in live excised large animal trachea using synchrotron X-ray imaging

    Get PDF
    Background: The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed as the world's widest synchrotron X-ray beam, enabling both clinical imaging and therapeutic applications for humans as well as the imaging of large animal models. Our group is developing methods for imaging the airways of newly developed CF animal models that display human-like lung disease, such as the CF pig, and we expect that the IMBL can be utilised to image airways in animals of this size. Methods: This study utilised samples of excised tracheal tissue to assess the feasibility, logistics and protocols required for airway imaging in large animal models such as pigs and sheep at the IMBL. We designed an image processing algorithm to automatically track and quantify the tracheal mucociliary transport (MCT) behaviour of 103 μm diameter high refractive index (HRI) glass bead marker particles deposited onto the surface of freshly-excised normal sheep and pig tracheae, and assessed the effects of airway rehydrating aerosols. Results: We successfully accessed and used scavenged tracheal tissue, identified the minimum bead size that is visible using our chosen imaging setup, verified that MCT could be visualised, and that our automated tracking algorithm could quantify particle motion. The imaging sequences show particles propelled by cilia, against gravity, up the airway surface, within a well-defined range of clearance speeds and with examples of 'clumping' behaviour that is consistent with the in vivo capture and mucus-driven transport of particles. Conclusion: This study demonstrated that the wide beam at the IMBL is suitable for imaging MCT in ex vivo tissue samples. We are now transitioning to in vivo imaging of MCT in live pigs, utilising higher X-ray energies and shorter exposures to minimise motion blur.Martin Donnelley, Kaye S. Morgan, Maged Awadalla, Nigel R. Farrow, Chris Hall and David W. Parson
    corecore