21,730 research outputs found

    Telescopes and space exploration

    Get PDF
    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described

    The z>4 Quasar Population Observed by Chandra and XMM-Newton

    Full text link
    The current status of our Chandra and XMM-Newton project on high-redshift (z>4) quasars is briefly reviewed. We report the main results obtained in the last few years for the detected quasars, along with a few (~10%) intriguing cases where no detection has been obtained with Chandra snapshot observations.Comment: 4 pages, to appear in the proceedings of 'Multiwavelength AGN surveys' (Cozumel, December 8-12 2003), ed. R. Maiolino and R. Mujic

    Telescopes and space exploration

    Get PDF
    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space

    A Neural Network Gravitational Arc Finder based on the Mediatrix filamentation Method

    Full text link
    Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements derived from the Mediatrix Filamentation Method as entries to an Artificial Neural Network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input to the ANN after a preselection. However, this completeness drops to \sim 70% on the HST images. The false detections are of the order of 3% of the objects detected in these images. The combination of Mediatrix measurements with an ANN is a promising tool for the pattern recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.Comment: Updated to match published versio

    Report of the Terrestrial Bodies Science Working Group. Volume 8: The comets

    Get PDF
    The determination of the nuclear and atmospheric properties of comets, and the interaction of the solar wind with the comet tail are scientific objectives for a mission to one or more comets in the next decade. Recommended priorities for direct cometary exploration are listed

    Meissner-London currents in superconductors with rectangular cross section

    Full text link
    Exact analytic solutions are presented for the magnetic moment and screening currents in the Meissner state of superconductor strips with rectangular cross section in a perpendicular magnetic field and/or with transport current. The extension to finite London penetration is achieved by an elegant numerical method which works also for disks. The surface current in the specimen corners diverges as l^(-1/3) where l is the distance from the corner. This enhancement reduces the barrier for vortex penetration and should increase the nonlinear Meissner effect in d-wave superconductors
    corecore