126 research outputs found

    A Unifying Theory of Biological Function

    Get PDF
    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism’s fitness, and modulates the organism’s variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Order in Spontaneous Behavior

    Get PDF
    Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents

    “Excellence R Us”: university research and the fetishisation of excellence

    Get PDF
    The rhetoric of “excellence” is pervasive across the academy. It is used to refer to research outputs as well as researchers, theory and education, individuals and organisations, from art history to zoology. But does “excellence” actually mean anything? Does this pervasive narrative of “excellence” do any good? Drawing on a range of sources we interrogate “excellence” as a concept and find that it has no intrinsic meaning in academia. Rather it functions as a linguistic interchange mechanism. To investigate whether this linguistic function is useful we examine how the rhetoric of excellence combines with narratives of scarcity and competition to show that the hypercompetition that arises from the performance of “excellence” is completely at odds with the qualities of good research. We trace the roots of issues in reproducibility, fraud, and homophily to this rhetoric. But we also show that this rhetoric is an internal, and not primarily an external, imposition. We conclude by proposing an alternative rhetoric based on soundness and capacity-building. In the final analysis, it turns out that that “excellence” is not excellent. Used in its current unqualified form it is a pernicious and dangerous rhetoric that undermines the very foundations of good research and scholarship

    Measuring research impact: a large cancer research funding programme in Australia

    Get PDF
    Background: Measuring research impact is of critical interest to philanthropic and government funding agencies interested in ensuring that the research they fund is both scientifically excellent and has meaningful impact into health and other outcomes. The Beat Cancer Project (BCP) is a AUD 34mcancerresearchfundingschemethatcommencedin2011.ItwasinitiatedbyanAustraliancharity(CancerCouncilSA),andsupportedbytheSouthAustralianGovernmentandthestatesmajoruniversities.Methods:ThisstudyappliedBuxtonandHanneysPaybackFrameworktoassessresearchimpactgeneratedfromtheBCPafter3yearsoffunding.DatasourceswereanauditofpeerreviewedpublicationsfromJanuary2011toSeptember2014fromWebofKnowledgeandaselfreportsurveyofinvestigatorsawardedBCPresearchfundingduringitsfirst3yearsofimplementation(20112013).Ofthe104surveys,92(88Results:TheBCPperformedwellacrossallfivecategoriesofthePaybackFramework.Intermsofknowledgeproduction,1257peerreviewedpublicationsweregeneratedandthemeanimpactfactorofpublishingjournalsincreasedannually.Thereweremanybenefitstofutureresearchwith21respondents(2334 m cancer research funding scheme that commenced in 2011. It was initiated by an Australian charity (Cancer Council SA), and supported by the South Australian Government and the state’s major universities. Methods: This study applied Buxton and Hanney’s Payback Framework to assess research impact generated from the BCP after 3 years of funding. Data sources were an audit of peer-reviewed publications from January 2011 to September 2014 from Web of Knowledge and a self-report survey of investigators awarded BCP research funding during its first 3 years of implementation (2011–2013). Of the 104 surveys, 92 (88%) were completed. Results: The BCP performed well across all five categories of the Payback Framework. In terms of knowledge production, 1257 peer-reviewed publications were generated and the mean impact factor of publishing journals increased annually. There were many benefits to future research with 21 respondents (23%) reporting career advancement, and 110 higher degrees obtained or expected (including 84 PhDs). Overall, 52% of funded projects generated tools for future research. The funded research attracted substantial further income yielding a very high rate of leverage. For every AUD 1 that the cancer charity invested, the BCP gained an additional AUD $6.06. Five projects (5%) had informed policy and 5 (5%) informed product development, with an additional 31 (34%) and 35 (38%) projects, respectively, anticipating doing so. In terms of health and sector and broader economic benefits, 8 (9%) projects had influenced practice or behaviour of health staff and 32 (34%) would reportedly to do so in the future. Conclusions: Research impact was a priority of charity and government funders and led to a deliberate funding strategy. Emphasising research impact while maintaining rigorous, competitive processes can achieve the joint objectives of excellence in research, yielding good research impact and a high rate of leverage for philanthropic and public investment, as indicated by these early results

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    The CNS Stochastically Selects Motor Plan Utilizing Extrinsic and Intrinsic Representations

    Get PDF
    Traditionally motor studies have assumed that motor tasks are executed according to a single plan characterized by regular patterns, which corresponds to the minimum of a cost function in extrinsic or intrinsic coordinates. However, the novel via-point task examined in this paper shows distinct planning and execution stages in motion production and demonstrates that subjects randomly select from several available motor plans to perform a task. Examination of the effect of pre-training and via-point orientation on subject behavior reveals that the selection of a plan depends on previous movements and is affected by constraints both intrinsic and extrinsic of the body. These results provide new insights into the hierarchical structure of motion planning in humans, which can only be explained if the current models of motor control integrate an explicit plan selection stage

    Distribution of the Octopamine Receptor AmOA1 in the Honey Bee Brain

    Get PDF
    Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons

    Behavioural Thermoregulatory Tactics in Lacustrine Brook Charr, Salvelinus fontinalis

    Get PDF
    The need to vary body temperature to optimize physiological processes can lead to thermoregulatory behaviours, particularly in ectotherms. Despite some evidence of within-population phenotypic variation in thermal behaviour, the occurrence of alternative tactics of this behaviour is rarely explicitly considered when studying natural populations. The main objective of this study was to determine whether different thermal tactics exist among individuals of the same population. We studied the behavioural thermoregulation of 33 adult brook charr in a stratified lake using thermo-sensitive radio transmitters that measured hourly individual temperature over one month. The observed behavioural thermoregulatory patterns were consistent between years and suggest the existence of four tactics: two “warm” tactics with both crepuscular and finer periodicities, with or without a diel periodicity, and two “cool” tactics, with or without a diel periodicity. Telemetry data support the above findings by showing that the different tactics are associated with different patterns of diel horizontal movements. Taken together, our results show a clear spatio-temporal segregation of individuals displaying different tactics, suggesting a reduction of niche overlap. To our knowledge, this is the first study showing the presence of behavioural thermoregulatory tactics in a vertebrate
    corecore