1,619 research outputs found
Molecular random tilings as glasses
We have recently shown [Blunt et al., Science 322, 1077 (2008)] that
p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles
into a two-dimensional rhombus random tiling. This tiling is close to ideal,
displaying long range correlations punctuated by sparse localised tiling
defects. In this paper we explore the analogy between dynamic arrest in this
type of random tilings and that of structural glasses. We show that the
structural relaxation of these systems is via the propagation--reaction of
tiling defects, giving rise to dynamic heterogeneity. We study the scaling
properties of the dynamics, and discuss connections with kinetically
constrained models of glasses.Comment: 5 pages, 5 figure
Assessing the material loss of the modular taper interface in retrieved metal on metal hip replacements
Measuring the amount of material loss in the case of revised hip replacements is considered to be a prerequisite of understanding and assessing the true in vivo performance of the implant. This paper outlines a method developed by the authors for quantifying taper material loss as well as more general taper interface parameters. Previous studies have mostly relied on visual inspection to assess the material loss at the taper interface, whereas this method aims to characterize any surface and form changes through the use of an out-of-roundness measurement machine. Along with assessing the volumetric wear, maximum linear penetration and taper contact length can also be determined. The method was applied to retrieved large head metal-on-metal femoral heads in order to quantify the material loss at this junction. Material loss from the female femoral head taper can be characterized as a localized area that is in contact with the stem taper surface. The study showed that this method has good repeatability and a low level of interoperability variation between operators
Coerced Mechanical Coarsening of Nanoparticle Assemblies
Coarsening is a ubiquitous phenomenon [1-3] that underpins countless processes in nature, including epitaxial growth [1,3,4], the phase separation of alloys, polymers and binary fluids [2], the growth of bubbles in foams5, and pattern formation in biomembranes6. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes [7-9]. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures
Population-level Eccentricity Distributions of Imaged Exoplanets and Brown Dwarf Companions: Dynamical Evidence for Distinct Formation Channels
The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100 au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e = 0–1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e ≈ 0.6–0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1–200 au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR 8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age
Population-level Eccentricity Distributions of Imaged Exoplanets and Brown Dwarf Companions: Dynamical Evidence for Distinct Formation Channels
The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100 au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e = 0–1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e ≈ 0.6–0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1–200 au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR 8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age
Diversity of Estrogen Degrading Microorganisms in Las Vegas Wash and Lake Mead, Nevada, USA
Endocrine disrupting chemicals (EDCs) are a subject of intense research as more studies reveal their persistence in the environment and detrimental effects on wildlife. Steroid hormones, including the natural and synthetic estrogens estrone (E1), 17-beta-estradiol (E2) and 17- alpha-ethinyl estradiol (EE2), are among the most bioactive and have been detected at low concentrations in waterways downstream from wastewater treatment plants. Las Vegas Wash, a stream flowing into Lake Mead and fed primarily by treated wastewater, provides a unique experimental system in which to study the role microorganisms play in the fate and dispersal of these compounds in surface waters
Macroscopic Equations of Motion for Two Phase Flow in Porous Media
The established macroscopic equations of motion for two phase immiscible
displacement in porous media are known to be physically incomplete because they
do not contain the surface tension and surface areas governing capillary
phenomena. Therefore a more general system of macroscopic equations is derived
here which incorporates the spatiotemporal variation of interfacial energies.
These equations are based on the theory of mixtures in macroscopic continuum
mechanics. They include wetting phenomena through surface tensions instead of
the traditional use of capillary pressure functions. Relative permeabilities
can be identified in this approach which exhibit a complex dependence on the
state variables. A capillary pressure function can be identified in equilibrium
which shows the qualitative saturation dependence known from experiment. In
addition the new equations allow to describe the spatiotemporal changes of
residual saturations during immiscible displacement.Comment: 15 pages, Phys. Rev. E (1998), in prin
- …