337 research outputs found

    Brief Home-Based Data Collection of Low Frequency Behaviors

    Get PDF
    Data-based decision making, an important component of positive behavior support, can be difficult in brief in-home therapy due to the limited amount of time a therapist has to directly observe the child. This difficulty is exacerbated when problem behavior occurs infrequently. When a therapist cannot reliably observe problem behavior, it is often necessary to rely on parental report. The current study evaluated three approaches for parental report of low frequency problem behavior: antecedent-behavior-consequence records, incident data, and interview. Each method was analyzed with clients in home-based therapy with 2-hour weekly appointments. All clients exhibited low-frequency (i.e., less than daily) and high-intensity (i.e., causes physical harm to self/others, damage to the environment, or severe decrement to family’s quality of life) problem behavior. The treatment goal for all clients was to reduce problem behavior (most commonly aggression, disruption, or self-injury). The number of instances of problem behavior captured by each method of data-collection, quality of the data (i.e., ability to detect treatment effects using the data), and therapist and parent acceptability of each measure were analyzed. Results are discussed in terms of the relative advantages and disadvantages of each measure, clinical application of the methods, and avenues for future research

    Expert Panel Recommendations on Lower Urinary Tract Health of Women Across Their Life Span

    Full text link
    Urologic and kidney problems are common in women across their life span and affect their daily life, including physical activity, sexual relations, social life, and future health. Urological health in women is still understudied and the underlying mechanisms of female urological dysfunctions are not fully understood. The Society for Women's Health Research (SWHR?) recognized the need to have a roundtable discussion where researchers and clinicians would define the current state of knowledge, gaps, and recommendations for future research directions to transform women's urological health. This report summarizes the discussions, which focused on epidemiology, clinical presentation, basic science, prevention strategies, and efficacy of current therapies. Experts around the table agreed on a set of research, education, and policy recommendations that have the potential to dramatically increase awareness and improve women's urological health at all stages of life.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140146/1/jwh.2016.5895.pd

    Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector

    Get PDF
    Improvements in temporal resolution of single photon detectors enable increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging, and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the most efficient, time-resolving single-photon counting detectors available in the near infrared, but understanding of the fundamental limits of timing resolution in these devices has been limited due to a lack investigations into the time scales involved in the detection process. We introduce an experimental technique to probe the detection latency in SNSPDs and show that the key to achieving low timing jitter is the use of materials with low latency. By using a specialised niobium nitride (NbN) SNSPD we demonstrate that the system temporal resolution can be as good as 2.6±0.2 ps for visible wavelengths and 4.3±0.2 ps at 1550 nm

    Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector

    Full text link
    Improving the temporal resolution of single photon detectors has an impact on many applications, such as increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the highest efficiency time-resolving single-photon counting detectors available in the near infrared. As the detection mechanism in SNSPDs occurs on picosecond time scales, SNSPDs have been demonstrated with exquisite temporal resolution below 15 ps. We reduce this value to 2.7±\pm0.2 ps at 400 nm and 4.6±\pm0.2 ps at 1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy dependence of the temporal resolution and detection latency suggests that intrinsic effects make a significant contribution.Comment: 25 pages, 9 figure

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD

    Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3(-/-) mice, but not wildtype mice.

    Get PDF
    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3(-/-) mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3(-/-)) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3(-/-) mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3(-/-) nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3(-/-) phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light

    Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist

    Get PDF
    In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30?min and 24?h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.Acknowledgements: M.G.-S. was recipient of a contract from the Sistema Nacional de Garantía Juvenil co-funded by the European Social Fund. We also thank Novartis for the generous gift of NVP-AAM077. This work was supported by the Instituto de Salud Carlos III, Subdirección General del Evaluación y Fomento de la Investigación (FIS Grants PI13/00038 and PI16/00217) that were co-funded by the European Regional Development Fund (‘A way to build Europe’). Funding from the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III is also acknowledged
    • …
    corecore