22 research outputs found

    Sensitivity to Vocalization Pitch in the Caudal Auditory Cortex of the Marmoset: Comparison of Core and Belt Areas

    Get PDF
    Based on anatomical connectivity and basic response characteristics, primate auditory cortex is divided into a central core surrounded by belt and parabelt regions. The encoding of pitch, a prototypical element of sound identity, has been studied in primary auditory cortex (A1) but little is known about how it is encoded and represented beyond A1. The caudal auditory belt and parabelt cortical fields process spatial information but also contain information on non-spatial aspects of sounds. In this study, we examined neuronal responses in these areas to pitch-varied marmoset vocalizations, to derive the consequent representation of pitch in these regions and the potential underlying mechanisms, to compare to the encoding and representation of pitch of the same sounds in A1. With respect to response patterns to the vocalizations, neurons in caudal medial belt (CM) showed similar short-latency and short-duration response patterns to A1, but caudal lateral belt (CL) neurons at the same hierarchical level and caudal parabelt (CPB) neurons at a higher hierarchical level showed delayed or much delayed response onset and prolonged response durations. With respect to encoding of pitch, neurons in all cortical fields showed sensitivity to variations in the vocalization pitch either through modulation of spike-count or of first spike-latency. The utility of the encoding mechanism differed between fields: pitch sensitivity was reliably represented by spike-count variations in A1 and CM, while first spike-latency variation was better for encoding pitch in CL and CPB. In summary, our data show that (a) the traditionally-defined belt area CM is functionally very similar to A1 with respect to the representation and encoding of complex naturalistic sounds, (b) the CL belt area, at the same hierarchical level as CM, and the CPB area, at a higher hierarchical level, have very different response patterns and appear to use different pitch-encoding mechanisms, and (c) caudal auditory fields, proposed to be specialized for encoding spatial location, can also contain robust representations of sound identity

    Evolution of flow regimes in non-Newtonian liquids under gas sparging

    No full text
    This paper provides experimental evidence supporting the idea that the transition to turbulent flow is governed by the ratio of the specific power input (SPI) and the term G/λ, where G is the viscoelastic modulus of the liquid and λ is the relaxation time, in a vessel containing a fluid agitated by sparged gas (air) at low superficial gas velocities. This finding provides a method for judging the flow regime within a vessel a priori using a nondimensional quantity and can be used as a scale for decision-making in cases where real-time visual analysis is not possible. While the work reported below is motivated by anaerobic digestion of wastewater sludge, the results are obtained using model liquids and should, therefore, have wide application in chemical process engineering, such as CFD simulation of mixing in viscoelastic fluids and mixing in fermentation processes

    Sensitivity to vocalization pitch in the caudal auditory cortex of the marmoset: Comparison of core and belt areas

    No full text
    Based on anatomical connectivity and basic response characteristics, primate auditory cortex is divided into a central core surrounded by belt and parabelt regions. The encoding of pitch, a prototypical element of sound identity, has been studied in primary auditory cortex (A1) but little is known about how it is encoded and represented beyond A1. The caudal auditory belt and parabelt cortical fields process spatial information but also contain information on non-spatial aspects of sounds. In this study, we examined neuronal responses in these areas to pitch-varied marmoset vocalizations, to derive the consequent representation of pitch in these regions and the potential underlying mechanisms, to compare to the encoding and representation of pitch of the same sounds in A1. With respect to response patterns to the vocalizations, neurons in caudal medial belt (CM) showed similar short-latency and short-duration response patterns to A1, but caudal lateral belt (CL) neurons at the same hierarchical level and caudal parabelt (CPB) neurons at a higher hierarchical level showed delayed or much delayed response onset and prolonged response durations. With respect to encoding of pitch, neurons in all cortical fields showed sensitivity to variations in the vocalization pitch either through modulation of spike-count or of first spike-latency. The utility of the encoding mechanism differed between fields: pitch sensitivity was reliably represented by spike-count variations in A1 and CM, while first spike-latency variation was better for encoding pitch in CL and CPB. In summary, our data show that (a) the traditionally-de fined belt area CM is functionally very similar to A1 with respect to the representation and encoding of complex naturalistic sounds, (b) the CL belt area, at the same hierarchical level as CM, and the CPB area, at a higher hierarchical level, have very different response patterns and appear to use different pitch-encoding mechanisms, and (c) caudal auditory fields, proposed to be specialized for encoding spatial location, can also contain robust representations of sound identity

    Distributed representation of vocalization pitch in marmoset primary auditory cortex

    No full text
    The pitch of vocalizations is a key communication feature aiding recognition of individuals and separating sound sources in complex acoustic environments. The neural representation of the pitch of periodic sounds is well defined. However, many natural sounds, like complex vocalizations, contain rich, aperiodic or not strictly periodic frequency content and/or include high-frequency components, but still evoke a strong sense of pitch. Indeed, such sounds are the rule, not the exception but the cortical mechanisms for encoding pitch of such sounds are unknown. We investigated how neurons in the high-frequency representation of primary auditory cortex (A1) of marmosets encoded changes in pitch of four natural vocalizations, two centred around a dominant frequency similar to the neuron's best sensitivity and two around a much lower dominant frequency. Pitch was varied over a fine range that can be used by marmosets to differentiate individuals. The responses of most high-frequency A1 neurons were sensitive to pitch changes in all four vocalizations, with a smaller proportion of the neurons showing pitch-insensitive responses. Classically defined excitatory drive, from the neuron's monaural frequency response area, predicted responses to changes in vocalization pitch i

    Overland flow and pathway analysis for modelling of urban pluvial flooding

    No full text
    Research on improving an overland flow model is presented for urban pluvial flooding under the dual-drainage concept where sewer flow dynamically interacts with overland flow. This occurs during heavy storms when the sewer system is surcharged. The system becomes pressurised and overland flow increases by the additional volume flowing out from the sewer. To represent the overland flow realistically, a new methodology was developed to automatically create the overland flow network which can interact with the drainage system. Use is made of high-resolution, accurate Digital Elevation Model data collected by the LiDAR technique. This approach updates the current urban drainage models to urban flood models with detailed representation of overland flow processes such as pond forming, flow through preferential surface pathways and surface drainage capacity. This work advances new areas of urban flood management including improvement in real-time control and of links with rainfall now-casting, and short term urban flood forecasting. The dual-drainage approach is appropriate for real-time applications

    Progesterone sharpens temporal response profiles of sensory cortical neurons in animals exposed to traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) initiates a cascade of pathophysiological changes that are both complex and difficult to treat. Progesterone (P4) is a neuroprotective treatment option that has shown excellent preclinical benefits in the treatment of TBI, but these benefits have not translated well in the clinic. We have previously shown that P4 exacerbates the already hypoactive upper cortical responses in the short-term post-TBI and does not reduce upper cortical hyperactivity in the long term, and we concluded that there is no tangible benefit to sensory cortex firing strength. Here we examined the effects of P4 treatment on temporal coding resolution in the rodent sensory cortex in both the short term (4 d) and long term (8 wk) following impact-acceleration-induced TBI. We show that in the short-term postinjury, TBI has no effect on sensory cortex temporal resolution and that P4 also sharpens the response profile in all cortical layers in the uninjured brain and all layers other than layer 2 (L2) in the injured brain. In the long term, TBI broadens the response profile in all cortical layers despite firing rate hyperactivity being localized to upper cortical layers and P4 sharpens the response profile in TBI animals in all layers other than L2 and has no long-term effect in the sham brain. These results indicate that P4 has long-term effects on sensory coding that may translate to beneficial perceptual outcomes. The effects seen here, combined with previous beneficial preclinical data, emphasize that P4 is still a potential treatment option in ameliorating TBI-induced disorders

    Field Quality and Hysteresis of LHC Superconducting Corrector Magnets

    No full text
    The Large Hadron Collider (LHC) will use some 7600 superconducting corrector magnets. The magnetic field quality is measured at room temperature by 12 magnetic measurement benches employed by the corrector manufacturers. CERN performs magnetic measurements at 4.2 K and at 1.9 K on a small subset of corrector magnets. The paper discusses the correlation between the warm and cold field measurements. The field quality is compared to the target field quality for LHC. Many corrector circuits will be powered in a way which cannot be predicted before LHC will start operation and which even then may change between physics runs. The measured magnetic hysteresis and its influence on possible setting errors during operation is discussed, in particular for the orbit correctors and the tuning/trim quadrupole magnet circuits
    corecore