41,854 research outputs found

    Tensor models and embedded Riemann surfaces

    Full text link
    Tensor models and, more generally, group field theories are candidates for higher-dimensional quantum gravity, just as matrix models are in the 2d setting. With the recent advent of a 1/N-expansion for coloured tensor models, more focus has been given to the study of the topological aspects of their Feynman graphs. Crucial to the aforementioned analysis were certain subgraphs known as bubbles and jackets. We demonstrate in the 3d case that these graphs are generated by matrix models embedded inside the tensor theory. Moreover, we show that the jacket graphs represent (Heegaard) splitting surfaces for the triangulation dual to the Feynman graph. With this in hand, we are able to re-express the Boulatov model as a quantum field theory on these Riemann surfaces.Comment: 9 pages, 7 fi

    Majorana lattices from the quantized Hall limit of a proximitized spin-orbit coupled electron gas

    Full text link
    Motivated by recent experiments demonstrating intricate quantum Hall physics on the surface of elemental bismuth, we consider proximity coupling an ss-wave superconductor to a two-dimensional electron gas with strong Rashba spin-orbit interactions in the presence of a strong perpendicular magnetic field. We focus on the high-field limit so that the superconductivity can be treated as a perturbation to the low-lying Landau levels. In the clean case, wherein the superconducting order parameter takes the form of an Abrikosov vortex lattice, we show that a lattice of hybridized Majorana modes emerges near the plateau transition of the lowest Landau level. However, unless magnetic-symmetry-violating perturbations are present, the system always has an even number of chiral Majorana edge modes and thus is strictly speaking Abelian in nature, in agreement with previous work on related setups. Interestingly, however, a weak topological superconducting phase can very naturally be stabilized near the plateau transition for the square vortex lattice. The relevance of our findings to potential near-term experiments on proximitized materials such as bismuth will be discussed.Comment: 13 pages, 9 figure

    Bayesian Optimization with Unknown Constraints

    Full text link
    Recent work on Bayesian optimization has shown its effectiveness in global optimization of difficult black-box objective functions. Many real-world optimization problems of interest also have constraints which are unknown a priori. In this paper, we study Bayesian optimization for constrained problems in the general case that noise may be present in the constraint functions, and the objective and constraints may be evaluated independently. We provide motivating practical examples, and present a general framework to solve such problems. We demonstrate the effectiveness of our approach on optimizing the performance of online latent Dirichlet allocation subject to topic sparsity constraints, tuning a neural network given test-time memory constraints, and optimizing Hamiltonian Monte Carlo to achieve maximal effectiveness in a fixed time, subject to passing standard convergence diagnostics.Comment: 14 pages, 3 figure

    Risk evaluations and condom use decisions of homeless youth: a multi-level qualitative investigation.

    Get PDF
    BackgroundHomeless youth are at higher risk for sexually transmitted infections and unwanted pregnancy than non-homeless youth. However, little is known about how they evaluate risk within the context of their sexual relationships. It is important to understand homeless youths' condom use decisions in light of their sexual relationships because condom use decisions are influenced by relationship dynamics in addition to individual attitudes and event circumstances. It is also important to understand how relationship level factors, sexual event circumstances, and individual characteristics compare and intersect.MethodsTo explore these issues, we conducted semi-structured interviews with 37 homeless youth in Los Angeles County in 2011 concerning their recent sexual relationships and analyzed the data using systematic methods of team-based qualitative data analysis.ResultsWe identified themes of risk-related evaluations and decisions at the relationship/partner, event, and individual level. We also identified three different risk profiles that emerged from analyzing how different levels of risk intersected across individual respondents. The three profiles included 1) Risk Takers, who consistently engage in risk and have low concern about consequences of risk behavior, 2) Risk Avoiders, who consistently show high concern about protection and consistently avoid risk, and 3) Risk Reactors, those who are inconsistent in their concerns about risk and protection and mainly take risks in reaction to relationship and event circumstances.ConclusionsInterventions targeting homeless youth should reflect multiple levels of risk behavior and evaluation in order to address the diversity of risk profiles. Relationship/partner-, event-, and individual-level factors are all important but have different levels of importance for different homeless youth. Interventions should be tailored to address the most important factor contributing to homeless youth reproductive needs

    Partial breakdown of quantum thermalization in a Hubbard-like model

    Get PDF
    We study the possible breakdown of quantum thermalization in a model of itinerant electrons on a one-dimensional chain without disorder, with both spin and charge degrees of freedom. The eigenstates of this model exhibit peculiar properties in the entanglement entropy, the apparent scaling of which is modified from a "volume law" to an "area law" after performing a partial, site-wise measurement on the system. These properties and others suggest that this model realizes a new, non-thermal phase of matter, known as a quantum disentangled liquid (QDL). The putative existence of this phase has striking implications for the foundations of quantum statistical mechanics.Comment: As accepted to PR

    Variable pitch fan system for NASA/Navy research and technology aircraft

    Get PDF
    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans

    Diagonal quantum Bianchi type IX models in N=1 supergravity

    Get PDF
    We take the general quantum constraints of N=1 supergravity in the special case of a Bianchi metric, with gravitino fields constant in the invariant basis. We construct the most general possible wave function which solves the Lorentz constraints and study the supersymmetry constraints in the Bianchi Class A Models. For the Bianchi-IX cases, both the Hartle-Hawking state and wormhole state are found to exist in the middle fermion levels.Comment: plain LaTex, 17 pages, accepted for publication in Classical Quantum Gravit
    corecore