14 research outputs found

    GBA-associated Parkinson’s disease in Hungary: clinical features and genetic insights

    Get PDF
    Introduction: Parkinson’s disease (PD) has a complex genetic background involving both rare and common genetic variants. Although a small percentage of cases show a clear Mendelian inheritance pattern, it is much more relevant to identify patients who present with a complex genetic profile of risk variants with different severity. The ß-glucocerebrosidase coding gene (GBA1) is recognized as the most frequent genetic risk factor for PD and Lewy body dementia, irrespective of reduction of the enzyme activity due to genetic variants. Methods: In a selected cohort of 190 Hungarian patients with clinical signs of PD and suspected genetic risk, we performed the genetic testing of the GBA1 gene. As other genetic hits can modify clinical features, we also screened for additional rare variants in other neurodegenerative genes and assessed the APOE-ε genotype of the patients. Results: In our cohort, we identified 29 GBA1 rare variant (RV) carriers. Out of the six different detected RVs, the highly debated E365K and T408M variants are composed of the majority of them (22 out of 32). Three patients carried two GBA1 variants, and an additional three patients carried rare variants in other neurodegenerative genes (SMPD1, SPG11, and SNCA). We did not observe differences in age at onset or other clinical features of the patients carrying two GBA1 variants or patients carrying heterozygous APOE-ε4 allele. Conclusion: We need further studies to better understand the drivers of clinical differences in these patients, as this could have important therapeutic implications. © 2023, The Author(s)

    Dynamic interaction of genetic risk factors and cocaine abuse in the background of Parkinsonism - a case report.

    Get PDF
    Parkinsonism is a complex multifactorial neurodegenerative disorder, in which genetic and environmental risk factors may both play a role. Among environmental risk factors cocaine was earlier ambiguously linked to Parkinsonism. Former single case reports described Parkinsonism in chronic cocaine users, but an epidemiological study did not confirm an increased risk of Parkinson's disease. Here we report a patient, who developed Parkinsonism in young age after chronic cocaine use, in whom a homozygous LRRK2 risk variant was also detected.The patient was investigated because of hand tremor, which started after a 1.5-year period of cocaine abuse. Neurological examination suggested Parkinsonism, and asymmetrical pathology was confirmed by the dopamine transporter imaging study. The genetic investigations revealed a homozygous risk allele in the LRRK2 gene. After a period of cocaine abstinence, the patient's symptoms spontaneously regressed, and the dopamine transporter imaging also returned to near-normal.This case report suggests that cocaine abuse indeed might be linked to secondary Parkinsonism and serves as an example of a potential gene-environmental interaction between the detected LRRK2 risk variant and cocaine abuse. The reversible nature of the DaTscan pathology is a unique feature of this case, and needs further evaluation, whether this is incidental or can be a feature of cocaine related Parkinsonism

    Az örökletes Parkinson-kór mint a POLG-gén károsodásának új klinikai megjelenési formája

    Get PDF
    A nukleárisan kódolt POLG-gén fehérjeterméke kulcsszerepet játszik a mitokondriális DNS replikációjának fenntar- tásában, és hibája különböző súlyosságú, több szervrendszert érintő betegségeket okoz. A klinikai spektrum rendkí- vül tág, a leggyakrabban előforduló tünetek közé tartozik többek között a ptosis, a myoclonus, az epilepszia, a myopathia, a szenzoros ataxia, a parkinsonizmus, a kognitív hanyatlás és az infertilitás is. Ma már ismert, hogy a Parkinson-kór kialakulása során a mitokondriális diszfunkció is nagy jelentőséggel bír a substantia nigra dopaminerg sejtjeinek elhalásában. Ezért a POLG-génben bekövetkező változások befolyásolhatják a különböző örökletes neuro- degeneratív betegségeknek, így a monogénes parkinsonizmusnak a kialakulását is. A Parkinson-kór és a POLG kap- csolatáról azonban még kevés az elérhető információ, és ez idáig a magyar populációra vonatkozó adatok sem álltak rendelkezésünkre. Vizsgálatunk során 67 magyar, a parkinsonizmus tüneteit mutató páciens esetében újgenerációs szekvenálást végeztünk, és a POLG-génben található, potenciálisan káros variánsokat elemeztük. 3 beteg esetében azonosítottunk potenciálisan kóroki eltérést. Közleményünkkel arra szeretnénk felhívni a figyelmet, hogy a parkinso- nizmus differenciáldiagnózisa során az esetleges POLG genetikai érintettségét is figyelembe kell venni. Különösen olyan plusztünetek jelenlétekor, mint az ophthalmoparesis, a nem vascularis típusú fehérállományi laesiók, a pszichi- átriai komorbiditás és a tünetek viszonylag korai indulása. Korábbi irodalmi adatok és saját tapasztalataink alapján összefoglaltuk a POLG-asszociált parkinsonizmus lehetséges diagnosztikai megközelítését is

    The Role of Genetic Testing in the Clinical Practice and Research of Early-Onset Parkinsonian Disorders in a Hungarian Cohort: Increasing Challenge in Genetic Counselling, Improving Chances in Stratification for Clinical Trials

    Get PDF
    The genetic analysis of early-onset Parkinsonian disorder (EOPD) is part of the clinical diagnostics. Several genes have been implicated in the genetic background of Parkinsonism, which is clinically indistinguishable from idiopathic Parkinson’s disease. The identification of patient’s genotype could support clinical decision-making process and also track and analyse outcomes in a comprehensive fashion. The aim of our study was to analyse the genetic background of EOPD in a Hungarian cohort and to evaluate the clinical usefulness of different genetic investigations. The age of onset was between 25 and 50 years. To identify genetic alterations, multiplex ligation-dependent probe amplification (n = 142), Sanger sequencing of the most common PD-associated genes (n = 142), and next-generation sequencing (n = 54) of 127 genes which were previously associated to neurodegenerative disorders were carried out. The genetic analysis identified several heterozygous damaging substitutions in PD-associated genes (C19orf12, DNAJC6, DNAJC13, EIF4G1, LRRK2, PRKN, PINK1, PLA2G6, SYNJ1). CNVs in PRKN and SNCA genes were found in five patients. In our cohort, nine previously published genetic risk factors were detected in three genes (GBA, LRRK2, and PINK1). In nine cases, two or three coexisting pathogenic mutations and risk variants were identified. Advances of sequencing technologies make it possible to aid diagnostics of PD by widening the scope of analysis to genes which were previously linked to other neurodegenerative disorders. Our data suggested that rare damaging variants are enriched versus neutral variants, among PD patients in the Hungarian population, which raise the possibility of an oligogenic effect. Heterozygous mutations of multiple recessive genes involved in the same pathway may perturb the molecular process linked to PD pathogenesis. Comprehensive genetic assessment of individual patients can rarely reveal monogenic cause in EOPD, although it may identify the involvement of multiple PD-associated genes in the background of the disease and may facilitate the better understanding of clinically distinct phenocopies. Due to the genetic complexity of the disease, genetic counselling and management is getting more challenging. Clinical geneticist should be prepared for counselling of patients with coexisting disease-causing mutations and susceptibility factors. At the same time, genomic-based stratification has increasing importance in future clinical trials

    MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans.

    Get PDF
    The protein MSTO1 has been localized to mitochondria and linked to mitochondrial morphology, but its specific role has remained unclear. We identified a c.22G > A (p.Val8Met) mutation of MSTO1 in patients with minor physical abnormalities, myopathy, ataxia, and neurodevelopmental impairments. Lactate stress test and myopathological results suggest mitochondrial dysfunction. In patient fibroblasts, MSTO1 mRNA and protein abundance are decreased, mitochondria display fragmentation, aggregation, and decreased network continuity and fusion activity. These characteristics can be reversed by genetic rescue. Short-term silencing of MSTO1 in HeLa cells reproduced the impairment of mitochondrial morphology and dynamics observed in the fibroblasts without damaging bioenergetics. At variance with a previous report, we find MSTO1 to be localized in the cytoplasmic area with limited colocalization with mitochondria. MSTO1 interacts with the fusion machinery as a soluble factor at the cytoplasm-mitochondrial outer membrane interface. After plasma membrane permeabilization, MSTO1 is released from the cells. Thus, an MSTO1 loss-of-function mutation is associated with a human disorder showing mitochondrial involvement. MSTO1 likely has a physiologically relevant role in mitochondrial morphogenesis by supporting mitochondrial fusion

    NKX2-1 New Mutation Associated With Myoclonus, Dystonia, and Pituitary Involvement

    Get PDF
    Background:NKX2-1 related disorders (also known as brain-lung-thyroid syndrome or benign hereditary chorea 1) are associated with a wide spectrum of symptoms. The core features are various movement disorders, characteristically chorea, less frequently myoclonus, dystonia, ataxia; thyroid disease; and lung involvement. The full triad is present in 50% of affected individuals. Numerous additional symptoms may be associated, although many of these were reported only in single cases. Pituitary dysfunction was ambiguously linked to NKX2-1 haploinsufficiency previously.Case Presentation: We examined two members of a family with motor developmental delay, mixed movement disorder (myoclonus, dystonia and chorea) and endocrinological abnormalities (peripheric thyroid disease, and pituitary hormone deficiencies). Dystonia predominated at the father, and myoclonus at the daughter. The father had hypogonadotropic hypogonadism, while the daughter was treated with growth hormone deficiency. Both patients had empty sella on MRI. Candidate gene analyses were negative. Exome sequencing detected a pathogenic stop variation (NM_003317:c.338G>A, p.Trp113*) in the NKX2-1 gene.Conclusions: This case study has two highlights. (1) It draws attention to possible pituitary dysfunction in brain-lung-thyroid syndrome, and provide further evidences that this might be linked to loss of function of the NKX2-1 gene. (2) It underscores the importance of considering NKX2-1 related disorders in the differential diagnosis of myoclonus dystonia
    corecore