2 research outputs found

    Estimation of Drag Finishing Abrasive Effect for Cutting Edge Preparation in Broaching Tool

    Get PDF
    In recent years, cutting edge preparation became a topic of high interest in the manufacturing industry because of the important role it plays in the performance of the cutting tool. This paper describes the use of the drag finishing DF cutting edge preparation process on the cutting tool for the broaching process. The main process parameters were manipulated and analyzed, as well as their influence on the cutting edge rounding, material remove rate MRR, and surface quality/roughness (Ra, Rz). In parallel, a repeatability and reproducibility R&R analysis and cutting edge radius re prediction were performed using machine learning by an artificial neural network ANN. The results achieved indicate that the influencing factors on re, MRR, and roughness, in order of importance, are drag depth, drag time, mixing percentage, and grain size, respectively. The reproducibility accuracy of re is reliable compared to traditional processes, such as brushing and blasting. The prediction accuracy of the re of preparation with ANN is observed in the low training and prediction errors 1.22% and 0.77%, respectively, evidencing the effectiveness of the algorithm. Finally, it is demonstrated that the DF has reliable feasibility in the application of edge preparation on broaching tools under controlled conditions.This research was funded by Basque government group IT 1573-22 and the Ministry of Mineco Grant PID2019-109340RB-I00 and PDC2021-121792-I00 funded by MCIN/AEI/10.13039/501100011033. Thanks, are also due to European commission by H2020 project n. 958357 InterQ Interlinked Process, Product and Data Quality framework for Zero-Defects Manufacturing. Experiments were performed by help of project (QUOLINK TED2021-130044B-I00) Ministerio de Ciencia e Innovación 2021

    The influence of cutting edge microgeometry on the broaching of Inconel 718 slots

    Get PDF
    In aero-engine production, the dovetails (firtrees) of turbine discs are manufactured by broaching. Introducing innovative micro-geometry modifications to broaching tools can significantly influence cutting force, energy consumption, tool wear, and cutting edge temperature during broaching. Therefore, this study aims to study this influence by treating the cutting edge by brushing with ceramic bristles. The results reveal that the increase in cutting edge radius significantly influences the cutting force, particularly its component in the forward direction, equating it to the tangential component. Furthermore, during the experimental tests, considerable wear was observed on the cutting edge, which generated strong vibrations detected through the force signals, accounting to poor surface quality and a higher coefficient of friction close to 1. The 2D simulations generated information on temperature distribution along the cutting edge profile. On the other hand, was observed the presence of subsurface damage characterized by distorted grain boundaries aligned with the cutting direction, along with the formation of uninterrupted non-serrated chips due to thermoplastic deformation. Further, 12 µm cutting edge radius exhibits the best performance in terms of cutting force, temperature, and surface quality.“This research was funded by the Ministry of Mineco Grant PID2019-109340RB-I00 and PDC2021-121792-I00 funded by MCIN/AEI/ https://doi.org/10.13039/501100011033. Thanks, are also due to European commission by H2020 project n. 958,357 InterQ Interlinked Process, Product and Data Quality framework for Zero-Defects Manufacturing. Experiments were performed by help of project (QUOLINK TED2021-130044B-I00) Ministerio de Ciencia e Innovación 2021. In aspects related with modelling, support from the University Excellency groups grant by Basque Government IT 1573–22”
    corecore