32 research outputs found

    Reducing the impact of the two invasive pests, Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) and Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), by strengthening sustainability and biological control in Mediterranean citrus

    Get PDF
    Actualmente, el control biológico es la base de los programas de Gestión Integrada de Plagas (GIP) de cítricos en el Mediterráneo. Uno de los mayores riesgos para estos programas de GIP en cítricos es la llegada y establecimiento de plagas exóticas que no tienen agentes de control biológico autóctonos o naturalizados que los puedan controlar. Su establecimiento obliga a los agricultores a utilizar insecticidas de amplio espectro que son incompatibles con la GIP por su elevada toxicidad sobre los agentes de control biológico. Este es el caso de dos de las últimas especies de plagas invasoras en nuestros cítricos: Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) y Trioza erytreae (Del Guercio) (Hemiptera: Triozidae). Delottococcus aberiae es un pseudocóccido originario del África subsahariana que fue detectado en nuestros cítricos por primera vez en el año 2009. Este pseudocóccido, al contrario de otras especies de cochinillas algodonosas, causa graves deformaciones en los frutos atacados, lo que conlleva importantes pérdidas económicas. Desde el momento en que D. aberiae se estableció hasta la fecha, el control de D. aberiae ha dependido únicamente de la utilización de insecticidas de amplio espectro debido a la falta de enemigos naturales autóctonos y de un método fiable de muestreo que permita determinar los Niveles de Daño Económico (NDE) y Medioambiental (NDEM). Por ello, en el capítulo 2, se estableció un protocolo de muestreo que permite estimar de forma precisa la densidad poblacional del pseudocóccido así como el NDE y el NDEM. Delottococcus aberiae presentó un patrón de distribución agregado en todos los órganos del árbol estudiados (hoja, brote, y fruto) durante la época en la que causa los mayores daños, esta es entre la floración y julio. Los NDE y NDEM obtenidos fueron 7.1% y 12.1% de frutos ocupados respetivamente. Con estos valores, se recomienda determinar la presencia o ausencia de D. aberiae en 275 cada dos semanas entre la caída de pétalos y el mes de julio. Los parasitoides del género Encyrtidae son junto con el depredador Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) el grupo de enemigos naturales más utilizado en el control biológico de pseudocóccidos. Lamentablemente, estudios previos de laboratorio y campo han demostrado que las especies de parasitoides autóctonos no son efectivas para controlar las poblaciones de D. aberiae ya que el pseudocóccido encapsula los huevos de los parasitoides. Ante esta situación, en los capítulos 3 y 4 se evaluó el papel que ejercen otros enemigos naturales en el control biológico de D. aberiae. En el capítulo 3, se analizó el potencial del ácaro del suelo Gaeolaelaps (Hypoaspis) aculeifer (Canestrini) (Acari: Laelapidae) como depredador de D. aberiae. A pesar de que los ácaros depredadores han sido citados como agentes de control biológico de numerosas plagas que, como D. aberiae, pasan parte de su ciclo vital en el suelo, nunca se ha evaluado su potencial como depredadores de pseudocóccidos. Nuestros resultados muestran que bajo condiciones de laboratorio G. aculeifer es capaz de depredar ninfas de D. aberiae. Además, tanto la tasa de depredación como la fecundidad de las hembras fueron significativamente mayores cuando el ácaro se alimentó de ninfas de D. aberiae en vez de huevos. En ensayos llevados a cabo en condiciones de semicampo, se observó que la infestación de plántulas de cítricos fue menor cuando el ácaro G. aculeifer estaba presente en la maceta de la plántula. Por lo tanto, se debería fomentar la presencia de ácaros depredadores en el suelo mediante programas de control biológico por conservación con el fin de aumentar la mortalidad de D. aberiae cuando está en el suelo a finales de invierno y primavera. En el capítulo 4 se analizó el efecto del coccinélido depredador C. montrouzieri sobre las poblaciones de D. aberiae en campo así como sobre los daños que produce el pseudocóccido. Los niveles poblacionales de D. aberiae y de su depredador C. montrouzieri estuvieron sincronizados a lo largo de los dos años de nuestro estudio. Presa y depredador tuvieron dos máximos poblacionales: uno al inicio de primavera y otro en verano. A pesar de este solapamiento temporal, C. montrouzieri no pudo prevenir los daños provocados por D. aberiae en la fruta. Además, la tasa de crecimiento poblacional de D. aberiae no se correlacionó con la densidad poblacional de C. montrouzieri. No obstante, cuando se analizaron los dos años de muestreo consecutivos, el incremento poblacional de D. aberiae del segundo año estuvo negativamente correlacionado con la densidad poblacional de C. montrouzieri del verano del año anterior. Este último resultado demuestra que aunque C. montrouzieri no es capaz de evitar los daños en fruto puede ser un valioso agente de control biológico combinado con otros enemigos naturales y medidas racionales. La reciente llegada y expansión de la psila africana de cítricos Trioza erytreae por la Península Ibérica es probablemente el mayor desafío al que se enfrenta la gestión de plagas de cítricos en el Mediterráneo. Este psílido es el vector del Huanglongbing (HLB) o greening: la enfermedad más devastadora de los cítricos en el mundo porque no tiene cura. Trioza erytreae fue detectada en la isla de Madeira (Portugal) en el año 1994 y en las Islas Canarias (España) en 2002. Hasta entonces, permanecía restringida a estas áreas no continentales, pero en 2014 fue detectada por primera vez en el continente europeo, en el noroeste de España y norte de Portugal. En estas regiones, los planes de erradicación no han tenido éxito y T. erytreae se extiende hacia el sur de Portugal. Hasta el momento, el HLB no ha sido detectado en Europa, pero normalmente el establecimiento del vector va seguido por la detección y expansión de la bacteria causante del HLB. Ante esta situación, el control biológico clásico puede ser una medida viable para prevenir la expansión de T. erytreae por las zonas citrícolas del Mediterráneo como ocurrió en la Isla Reunión en los años setenta. Con el fin de iniciar un proyecto de control biológico clásico, en el capítulo 5, se viajó a Sudáfrica para desentrañar el complejo de parasitoides nativos de T. erytreae y la biología de los principales parasitoides. El complejo de parasitoides de T. erytreae está formado por tres especies de parasitoides primarios: Tamarixia dryi (Waterston) (Hymenoptera: Encyrtidae), Psyllaephagus pulvinatus (Waterston) (Hymenoptera: Encyrtidae) y una nueva especie perteneciente al género Tamarixia. Entre ellas, T. dryi fue la especie más abundante pero su abundancia relativa difirió entre las zonas muestreadas. El sexo de la descendencia de T. dryi y Tamarixia sp. dependió del tamaño de las ninfas de T. erytreae que parasitaron. Ambos parasitoides pusieron mayor proporción de hembras cuando las ninfas fueron mayores de 0,6 mm2 en el caso de T. dryi y de 1,2 mm2 para Tamarixia sp. Este resultados sugiere que T. dryi tiene mayor potencial que Tamarixia sp. porque pondrá una mayor proporción de hembras en los estadios iniciales del psílido. Las especies de parasitoides primarios fueron a su vez atacadas por tres especies de hiperparasitoides: Aphidencyrtus cassatus Annecke (Hymenoptera: Encyrtidae), Marietta javensis (Howard) (Hymenoptera: Aphelinidae) y una especie del género Aphanogmus. Aphidencyrtus cassatus fue la especie más abundante entre los hiperparasitoides y emergió de los tamaños ninfales de T. erytreae de mayor tamaño. Por último, en el laboratorio se pudo determinar la longevidad del parasitoide T. dryi y del hiperparasitoide A. cassatus. Las hembras de ambas especies vivieron más de 30 días y presentaron una longevidad similar, lo que muestra el potencial problema que pueden suponer los hiperparasitoides en el programa de control biológico clásico. Como conclusión, los resultados obtenido en Sudáfrica corroboran que la introducción del parasitoide T. dryi en Europa es la solución más prometedora y económica para reducir el avance de T. erytreae.Biological control is the base of the Integrated Pest Management (IPM) programs in Mediterranean citrus nowadays. The greatest risk for citrus is the appearance and emergence of exotic pests in the absence of indigenous natural enemies. Their establishment obligates growers to depend on the use of broad spectrum pesticides. This reversion to the use of pesticides jeopardizes current IPM programs implemented in Mediterranean citrus. This is the case of the two invasive citrus pests, Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) and Trioza erytreae (Del Guercio) (Hemiptera: Triozidae). Delottococcus aberiae was first detected in Europe in 2009. Native to Southern Africa, unlike other species of citrus mealybugs, it causes severe fruit size reduction and distortions that lead to significant economic losses. Since D. aberiae established itself, its management has relied on the repeated applications of broad spectrum insecticides due to the lack of effectiveness of the indigenous natural enemies and the absence of a reliable sampling procedure to determine the Economic Injury Levels (EIL) and the Environmental Economic Injury levels (EEIL). Consequently, in chapter 2, an efficient sampling protocol to assess mealybug population density as well as both EIL and EEIL were developed. Delottococcus aberiae tended to aggregate in all the organs of the tree and infested the fruits at the beginning of spring. The EIL and EEIL were calculated as 7.1% and 12.1% of occupied fruits, respectively. With these outcomes, we recommend sampling 275 fruits using a binomial sampling methodology or alternatively, 140 fruits with an enumerative method bimonthly between petal fall and July. Among natural enemies, parasitoids are the most used and effective biological control agents against mealybug pests. Unfortunately, a previous laboratory study demonstrated that indigenous parasitoids are ineffective to control D. aberiae because the mealybug encapsulates parasitoid eggs. In this context, in chapter 3 and 4 the role that other indigenous natural enemies of D. aberiae play in biological control was evaluated. In chapter 3, the predatory potential of the soil dwelling mite Gaeolaelaps (Hypoaspis) aculeifer (Canestrini) (Acari: Laelapidae) for D. aberiae was analysed. Even though predatory mites have been recorded as natural enemies of key pests that spend part of their life cycle in the soil, they have never been evaluated as mealybug predators that also inhabit the soil. Our results showed that under laboratory conditions G. aculeifer preyed on D. aberiae. Both predation rates and the proportion of G. aculeifer females that laid eggs were significantly higher when having preyed on mealybug nymphs than on eggs. In trials conducted under semi-field conditions, releases of G. aculeifer decreased D. aberiae density levels on potted citrus plants. Therefore, the presence of predatory mites should be promoted in conservation biological control strategies to reduce D. aberiae population densities when the mealybug migrates to the soil at the end of the winter and in spring. In chapter 4, we evaluated the impact of Cryptolaemus montrouzieri Mulsant (Coleoptera: Cocinellidae), one of the predators in the biological control of mealybugs most used worldwide to control D. aberiae in the field. Throughout the two years of our field study, C. montrouzieri and D. aberiae had two main synchronised population peaks per year: early spring and summer. However, in spite of this synchrony, C. montrouzieri did not prevent fruit damage. In addition, D. aberiae population growth rates were not correlated with C. montrouzieri density. Nevertheless, when two consecutive years were analysed, the increase of D. aberiae in the second year was negatively correlated with the density of C. montrouzieri in summer of the previous year. According to our results, C. montrouzieri was not able to prevent fruit damage produced by the mealybug. However, it could become a valuable addition to the natural enemy guild when combined with other natural enemies and rational control measures. Even more serious than the presence of the mealybug, it is the expansion of the African citrus psyllid Trioza erytreae in the Iberian Peninsula. This psyllid is the vector of the most devastating citrus disease in the world: the Huanglongbing (HLB) or citrus greening. In Europe, T. erytreae was first recorded in the islands of Madeira (Portugal) in 1994 and in the Canary Islands (Spain) in 2002. Until then, it had remained restricted to non-continental areas. In 2014 it was first detected in mainland Europe: north-western Spain and northern Portugal. In these regions the current contingency plans have not been successful and T. erytreae is now spreading quickly towards the south. At present, HLB has not been detected in Europe, but the establishment of the vector is normally followed by the arrival of the bacteria. Therefore, the implementation of an efficient and sustainable pest management program is needed. In this context, classical biological control seems to be the most feasible measure for preventing T. erytreae to spread further into the Mediterranean citrus growing areas. In chapter 5, the parasitoid complex of T. erytreae in South Africa was disentangled with both morphological and molecular characterization. Our results showed that the parasitoid complex of T. erytreae included three species of primary parasitoids: Tamarixia dryi (Waterston) (Hymenoptera: Encyrtidae), Psyllaephagus pulvinatus (Waterston) (Hymenoptera: Encyrtidae) and one new species from the genus Tamarixia. Among them, T. dryi was the most abundant species even though its relative abundance differed between sampling locations. The secondary sex ratio (males/females) of T. dryi and Tamarixia sp. became female biased when T. erytreae nymphs were larger than 0.6 and 1.2 mm2, respectively. Primary parasitoids were attacked by three species of hyperparasitoids: Aphidencyrtus cassatus Annecke (Hymenoptera: Encyrtidae), Marietta javensis (Howard) (Hymenoptera: Aphelinidae) and a species of the genus Aphanogmus. Aphidencyrtus cassatus was the most abundant hyperparasitoid which emerged from large nymphs. Both A. cassatus and T. dryi adult females showed similar longevity. In light of these results, the introduction of the parasitoid T. dryi into Europe will be the most promising biological control strategy to slow down T. erytreae spread

    Maritime Climate in the Canary Islands and its Implications for the Construction of Coastal Infrastructures

    Get PDF
    Islands are isolated systems that depend on maritime trade for their subsistence. Efficient, durable and structurally reliable port infrastructures are essential for the economic and social development of islands. However, not all port infrastructures are designed in the same way. They can vary, depending on whether they are built on continental land, built on non-volcanic islands or built on volcanic oceanic islands (such as the Canary Islands, Spain). The latter islands are the subject of this study due to their specific features, construction difficulties and the importance of sound maritime infrastructures. The maritime climate of an area consists of the wave and storm regimes that affect it and, from these, the coastal dynamics and coastal formations of that area can be studied. For this reason, historical data were collated on significant directional wave heights from 1958 to 2015 from several WANA-SIMAR points in the virtual buoy network of State Ports of Spain located near the Canary Islands. These data have been studied to obtain the maximum directional wave heights (Hs) at each point. With this analysis, we have obtained useful summary tables to calculate wave height by a graphic method that transforms the distribution function into a line drawn on probabilistic paper, using reduced variables. This enables adjustments to be made by linear regression and minimum square methods to facilitate planning and design of maritime infrastructures in a reliable way. Doi: 10.28991/CEJ-2022-08-01-02 Full Text: PD

    Density and phenology of the invasive mealybug Delottococcus aberiae on citrus: implications for integrated pest management

    Full text link
    [EN] Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a new invasive citrus pest in Spain. It causes severe fruit distortions and, as a new invasive mealybug, there is a lack of information about its biology. This research aims to examine the seasonal trend of D. aberiae in citrus, using several sampling methods, as a first step to develop an integrated pest management program. Ten citrus orchards from Eastern Spain were periodically sampled during three years using absolute (plant material) and relative (corrugated cardboard band traps and sticky traps) sampling methods. The three sampling methods showed that D. aberiae completes multiple generations per year, two of them being clearly defined and resulting in high populations. D. aberiae peaked between May and June, damaging the developing fruit. Corrugated cardboard band traps were able to detect prepupa and pupa male instars and gravid females, providing a quantitative measurement of D. aberiae density at its first population peak. The use of corrugated cardboard band traps is recommended to monitor population levels and sticky traps to determine male flight periods, representing simple sampling techniques to monitor D. aberiae. These results will improve the sampling protocols and allow for the development of an integrated pest management program.We would like to thank the owners of the orchards for allowing us to use their plantations and P. Bru (IVIA) and J. Catalan (IVIA) for their help in sampling. This research was supported by two predoctoral grants (FPU to V. Martinez-Blay and Val I + d to J. Perez-Rodriguez from the Spanish Ministry of Education, Culture and Sport and Generalitat Valenciana, respectively), the European Grants FP7-IAPP #324475 'Colbics' and FP7-IRSES #612566 'Biomodic,' and a national project provided by INIA (Project No. RTA2014-00067). The authors thank Debra Westall (UPV) for revising the manuscript.Martínez-Blay, V.; Pérez-Rodríguez, J.; Tena, A.; Soto Sánchez, AI. (2018). Density and phenology of the invasive mealybug Delottococcus aberiae on citrus: implications for integrated pest management. Journal of Pest Science. 91(2):625-637. https://doi.org/10.1007/s10340-017-0928-yS625637912Afifi SA (1968) Morphology and taxonomy of the adult males of the families Pseudococcidae and Eriococcidae: (Homoptera:Coccoidea). Bull Br Mus (Nat Hist) Entomol, Suppl 13. LondonAgustí M (2003) Citricultura. Mundi-Prensa, MadridBahder BW, Naidu RA, Daane KM, Millar JG, Walsh DB (2013) Pheromone-based monitoring of Pseudococcus maritimus (Hemiptera:Pseudococcidae) populations in concord grape vineyards. J Econ Entomol 106:482–490. doi: 10.1603/ec12138Bartlett BR, Clancy DW (1972) The comstock mealybug in California and observations on some of its natural enemies. J Econ Entomol 65:1329–1332Beardsley JW (1960) A preliminary study of the males of some hawaiian mealybugs (Homoptera: Pseudococcidae). Proc Hawaii Entomol Soc 16:199–243Beltrà A, Soto A (2012) Pseudocóccidos de importancia agrícola y ornamental en España. Editorial Universitat Politècnica de València, SpainBeltrà A, Soto A, Germain J-F, Matile-Ferrero D, Mazzeo G, Pellizzari G, Russo A, Franco JC, Williams DJ (2010) The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from South America to Europe. Entomol Hellenica 19:137–143Beltrà A, Soto A, Malausa T (2012) Molecular and morphological characterisation of Pseudococcidae surveyed on crops and ornamental plants in Spain. Bull Entomol Res 102:165–172. doi: 10.1017/S0007485311000514Beltrà A, Garcia-Marí F, Soto A (2013a) El cotonet de Les Valls, Delottococcus aberiae, nueva plaga de los cítricos. Levante Agrícola 419:348–352Beltrà A, Garcia-Marí F, Soto A (2013b) Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae). J Econ Entomol 106:1486–1494. doi: 10.1603/ec13024Beltrà A, Tena A, Soto A (2013c) Reproductive strategies and food sources used by Acerophagus n. sp. near coccois, a new successful parasitoid of the invasive mealybug Phenacoccus peruvianus. J Pest Sci 86:253–259. doi: 10.1007/s10340-012-0475-5Beltrà A, Addison P, Avalos JA, Crochard D, Garcia-Mari F, Guerrieri E, Giliomee JH, Malausa T, Navarro-Campos C, Palero F, Soto A (2015) Guiding classical biological control of an invasive mealybug using integrative taxonomy. PLoS ONE 10:e0128685. doi: 10.1371/journal.pone.0128685Ben-Dov Y (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae), with data on geographical distribution, host plants, biology and economic importance. Intercept Limited, AndoverUKBlumberg D, Ben-Dov Y, Mendel Z (1999) The citrulus mealybug, Pseudococcus cryptus Hempel, and its natural enemies in Israel: history and present situation. Entomologica 33:141–152Browning TO (1959) The long-tailed mealybug, Pseudocuccus aonidum (L.), in South Australia. J Agric Res 10:322–339De Lotto G (1961) New Pseudococcidae (Homoptera: Coccoidea) from Africa. Bull Br Mus (Nat Hist) Entomol 10:211–238De Villiers M, Pringle KL (2007) Seasonal occurrence of vine pests in commercially treated vineyards in the Hex River Valley in the Western Cape Province, South Africa. Afr Entomol 15:241–260DeBach P (1949) Population studies of the long-tailed mealybug and its natural enemies on citrus trees in Southern California. Ecology 30:14–25Franco J (1994) Citrus phenology as a basis to study the population dynamics of the citrus mealybug complex in Portugal. In: Tribulato E, Gentile A, Reforgiato G (eds) Proceedings of the international society of citriculture, vol 3, pp 929–930Franco JC, Silva EB, Carvalho JP (2000) Cochonilhas-algodão (Hemiptera, Pseudococcidae) associadas aos citrinos em Portugal. ISA Press, LisboaFranco JC, Suma P, Silva EB, Blumberg D, Mendel Z (2004) Management strategies of mealybug pests of citrus in mediterranean countries. Phytoparasitica 32:507–522Franco JC, Zada A, Mendel Z (2009) Novel approaches for the management of mealybug pests. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests: application and resistance managements. Springer, Netherlands, pp 233–278. doi: 10.1007/978-90-481-2316-2_10Furness G (1976) The dispersal, age-structure and natural enemies of the long-tailed mealybug, Pseudocccus longispinus (Targioni-Tozzetti), in relation to sampling and control. Aust J Zool 24:237–247García-Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Database (Oxford) 2016:1–5. doi: 10.1093/database/bav118Geiger CA, Daane KM (2001) Seasonal movement and distribution of the grape mealybug (Homoptera: Pseudococcidae): developing a sampling program for San Joaquin Valley vineyards. J Econ Entomol 94:291–301. doi: 10.1603/0022-0493-94.1.291Gonzalez D (1971) Sampling as a basis for pest management strategies. In: Komarek EV (ed) Proceedings of the tall timbers conference on ecological animal control by habitat management, vol 2, pp 83–101Goolsby J, Kirk A, Meyerdirk DE (2002) Seasonal phenology and natural enemies of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in Australia. Fla Entomol 85:494–498Grimes E, Cone W (1985) Life history, sex attraction, mating and natural enemies of the grape mealybug, Pseudococcus maritimus (Homoptera: Pseudococcidae). Ann Entomol Soc Am 78:554–558Grout TG, Richards GI (1991) Value of pheromone traps for predicting infectations of red scale Aonidiella aurantii (Maskell) (Hom., Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thys., Thripidae). J Appl Entomol 111:20–27Gullan PJ, Martin J (2009) Sternorrhyncha (jumping plant-lice, whiteflies, aphids, and scale insects). In: Vincent H, Resh RTC (eds) Encyclopedia of insects. Elsevier, San Diego, pp 957–967Hall DG, Roda A, Lapointe SL, Hibbard K (2008) Phenology of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in Florida based on attraction of adult males to pheromone traps. Fla Entomol 91:305–310Hardy NB, Gullan PJ, Hodgson CJ (2008) A subfamily-level classification of mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological data. Syst Entomol 33:51–71Hattingh V, Cilliers C, Bedford E (1998) Citrus mealybugs. In: Bedford E, Van den Berg M, De Villiers E (eds) Citrus pests in the Republic of South Africa. ARC-ITSC, South Africa, pp 112–120Haviland DR, Beede RH, Daane KM (2012) Seasonal phenology of Ferrisia gilli (Hemiptera: Pseudococcidae) in commercial pistachios. J Econ Entomol 105:1681–1687. doi: 10.1603/ec12070Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414. doi: 10.1111/j.1365-2664.2007.01442.xIslam KS, Copland MJW (1997) Host preference and progeny sex ratio in a solitary koinobiont mealybug endoparasitoid, Anagyrus pseudococci (Girault), in response to its host stage. Biocontrol Sci Technol 7:449–456. doi: 10.1080/09583159730857Jervis MA, Copland MJW, Harvey JA (2005) The lyfe-cycle. In: Jervis MA (ed) Insect as natural enemies: a practical perspective. Springer, Dordrecht, pp 73–165Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. In: Langor DW, Sweeney J (eds) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Springer, Netherlands, pp 21–45. doi: 10.1007/978-1-4020-9680-8_3Kozár F (1989) Microhabitat specialization and similarity of scale-insect assemblages on different fruit trees and in different countries. Ecol Entomol 14:175–180Lacirignola C, D’Onghia AM (2009) The Mediterranean citriculture: productions and perspectives. In: D’Onghia AM, Djelouah K, Roistacher CN (eds) Citrus tristeza virus and Toxoptera citricidus: a serious threat to the Mediterranean citrus industry. Options Méditerranéennes: Série B. Etudes et Recherches, vol 65. CIHEAM, Bari, pp 13–17Longo S, Mazzeo G, Russo A (1995) Biological observations on some scale insects (Homoptera: Coccoidea) in Sicily. Isr J Entomol 29:219–222Mansour R, Grissa-Lebdi K, Suma P, Mazzeo G, Russo A (2017) Key scale insects (Hemiptera: Coccoidea) of high economic importance in a Mediterranean area: host plants, bio-ecological characteristics, natural enemies and pest management strategies—a review. Plant Prot Sci 53:1–14. doi: 10.17221/53/2016-ppsMartínez-Ferrer MT, García-Marí F, Ripollés JL (2003) Population dynamics of Planococcus citri (Risso) (Homoptera: Pseudococcidae) in citrus groves in Spain. IOBC-WPRS Bull 26:149–161Martínez-Ferrer MT, Ripollés JL, Garcia-Marí F (2006) Enumerative and binomial sampling plans for citrus mealybug (Homoptera: Pseudococcidae) in citrus groves. J Econ Entomol 99:993–1001. doi: 10.1603/0022-0493-99.3.993Mazzeo G, Russo A, Suma P (1999) Phenacoccus solani ferris (Homoptera: Coccoidea) on ornamental plants in Italy. Boll Zool agr Bachic 31:31–35Mazzeo G, Longo S, Pellizzari G, Porcelli F, Suma P, Russo A (2014) Exotic scale insects (Coccoidea) on ornamental plants in Italy: a never-ending story. Acta Zool Bulg 6:55–61McKenzie HL (1967) Mealybugs of California, with taxonomy, biology, and control of North American species (Homoptera: Coccoidea: Pseudococcidae). Cambridge University Press, BerkeleyMendel Z, Watson GW, Protasov A, Spodek M (2016) First record of the papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Hemiptera: Coccomorpha: Pseudococcidae), in the Western Palaearctic. EPPO Bull 46:580–582. doi: 10.1111/epp.12321Meyerdirk DE, Newell IM (1979) Seasonal development and flight activity of Pseudocccus comstocki in California. Ann Entomol Soc Am 72:492–494Meyerdirk DE, Newell IM, Warkentin RW (1981) Biological control of comstock mealybug. J Econ Entomol 74:79–84Meyerdirk DE, Warkentin R, Attavien B, Gersabeck E, Fracis A, Adams M, Francis G (2001) Biological control of pink hibiscus mealybug project manual. United States Department of Agriculture (USDA), WashingtonMillar JG, Daane KM, McElfresh JS, Moreira JA, Malakar-Kuenen R, Guillén M, Bentley WJ (2002) Development and optimization of methods for using sex pheromone for monitoring the mealybug Planococcus ficus (Homoptera: Pseudococcidae) in California vineyards. J Econ Entomol 95:706–771Miller DR, Giliomee JH (2011) Systematic revision of the mealybug genus Delottococcus Cox & Ben-Dov (Hemiptera: Pseudococcidae). Afr Entomol 19:614–640Miller DR, Miller GL, Watson GW (2002) Invasive species of mealybugs (Hemiptera: Pseudococcidae) and their threat to U.S. agriculture. Proc Entomol Soc Wash 104:825–836Moreno DS, Reed DK, Shaw JG, Newell IM (1972) Sex lure survey trap for comstock mealybug. Citograph 58(43):68Moreno DS, Fargerlund J, Ewart WH (1984) Citrus mealybug (Homoptera: Pseudococcidae): behavior of males in response to sex pheromone in laboratory and field. Ann Entomol Soc Am 77:32–38Mudavanhu P (2009) An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa. Dissertation, University of StellenboschMudavanhu P, Addison P, Pringle Ken L (2011) Monitoring and action threshold determination for the obscure mealybug Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) using pheromone-baited traps. Crop Prot 30:919–924. doi: 10.1016/j.cropro.2011.02.034Panis A (1986) Biological features of Pseudococcus affinis (Mask.) (Homoptera, Pseudococcidae) as guidelines of its control in water-sprinkled citrus orchards. In: Cavalloro R, Di Martino E (eds) Integrated pest control in citrus groves. Proceedings of the expert’s meetings, pp 59–65Pellizzari G (2005) Cocciniglie nuove o poco note potenzialmente dannose per l’Italia: Fiorinia pinicola Maskell, Pseudococcus comstocki (Kuwana), Peliococcus turanicus (Kiritshenko). Inf Fitopatol 55:20–25Pellizzari G, Germain J-F (2010) Scales (Hemiptera, Superfamily Coccoidea), Chapter 9.3. BioRisk 4:475–510. doi: 10.3897/biorisk.4.45Pellizzari G, Porcelli F (2014) Alien scale insects (Hemiptera Coccoidea) in European and Mediterranean countries: the fate of new and old introductions. Phytoparasitica 42:713–721. doi: 10.1007/s12600-014-0414-5Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20Roltsch WJ, Meyerdirk DE, Warkentin R, Andress ER, Carrera K (2006) Classical biological control of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in southern California. Biol Control 37:155–166. doi: 10.1016/j.biocontrol.2006.01.006Roques A, Rabitsch W, Rasplus J-Y, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Springer, The Netherlands, pp 63–79. doi: 10.1007/978-1-4020-8280-1Rotundo G, Tremblay E (1975) Sull’attrattività delle femmine vergini di due specie di Pseudococcidi (Homoptera Coccoidea) per un Imenottero parassita (Hymenoptera Chalcidoidea). Boll Lab Entomol Agr Portici 32:172–179Samways MJ (1988) Comparative monitoring of red scale Aonidiella aurantii (Mask.) (Hom., Diaspididae) and its Aphytis spp. (Hym., Aphelinidae) parasitoids. J Appl Entomol 105:483–489Santorini A (1977) Etude de quelques caractères biologiques de Planococcus citri (Risso) en Grèce (Homoptera, Coccoidea, Pseudococcidae). Fruits 32:611–612Serrano MS, Lapointe SL, Meyerdirk DE (2001) Attraction of males by virgin females of the mealybug Maconellicoccus hirsutus (Hemiptera: Pseudococcidae). Popul Ecol 30:339–345Soto A, Martínez-Blay V, Beltrà A, Pérez-Rodríguez J, Tena A (2016a) Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae), comportamiento de la plaga en parcelas de cítricos valencianos. Phytoma 277:49–53Soto A, Martínez-Blay V, Benito M, Beltrà A (2016b) Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae): viabilidad de su control biológico. Phytoma 284:85–87Suckling DM (2000) Issues afecting the use of pheromones and other semiochemicals in orchards. Crop Prot 19:677–683Suma P, Mazzeo G, La Pergola A, Nucifora S, Russo A (2015) Establishment of the pineapple mealybug Dysmicoccus brevipes (Hemiptera: Pseudococcidae) in Italy. EPPO Bull 45:218–220. doi: 10.1111/epp.12206Sun J, Clarke SR, DeBarr GL, Berisford CW (2002) Yellow sticky traps for monitoring males and two parasitoids of Oracella acuta (Lobdell) (Homoptera: Pseudococcidae). J Entomol Sci 37:177–181Tena A, García-Marí F (2011) Current situation of citrus pests and diseases in the Mediterranean basin. IOBC/WPRS Bull 62:365–378Tena A, Catalán J, Bru P, Urbaneja A (2014) Delottococcus aberiae, nueva plaga de cítricos. Agricultura 978:746–748Tena A, García-Bellón J, Urbaneja A (2017) Native and naturalized mealybug parasitoids fail to control the new citrus mealybug pest Delottococcus aberiae. J Pest Sci 90:659–667. doi: 10.1007/s10340-016-0819-7Tremblay E, Tranfaglia A, Rotundo G, Iaccarino F (1977) Osservazioni comparate su alcune specie di Pseudococcidi (Homoptera: Coccoidea). Boll Lab Entomol Agr Portici 34:113–135Walton VM, Daane KM, Pringle KL (2004) Monitoring Planococcus ficus in South African vineyards with sex pheromone-baited traps. Crop Prot 23:1089–1096. doi: 10.1016/j.cropro.2004.03.016Waterworth RA, Redak RA, Millar JG (2011) Pheromone-baited traps for assessment of seasonal activity and population densities of mealybug species (Hemiptera: Pseudococcidae) in nurseries producing ornamental plants. J Econ Entomol 104:555–565. doi: 10.1603/ec10317Way MJ, van Emden HF (2000) Integrated pest management in practice—pathways towards successful application. Crop Prot 19:81–10

    Seasonal Distribution and Movement of the Invasive Pest Delottococcus aberiae (Hemiptera: Pseudococcidae) Within Citrus Tree: Implications for Its Integrated Management

    Full text link
    [EN] Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) is the most recent species of mealybug introduced to Spain that is affecting citrus. The feeding behavior of D. aberiae causes severe direct damage to citrus fruits, distorting their shape and/or causing reduction in size. There is no information available regarding its distribution within the citrus trees. The main objective of this study was to describe the seasonal distribution of D. aberiae within citrus trees and its migration patterns on the plants. Ten citrus orchards from eastern Spain were periodically sampled during 3 yr. In each orchard, the mealybug was sampled in different infested strata (canopy, trunk, and soil) and canopy structures (flower, fruit, leaf, and twig). Results showed that, within the sampled strata, D. aberiae was mostly in the canopy. Within the canopy, the feeding location of D. aberiae changed throughout the year. D. aberiae overwintered in the twigs and moved to the flowers and fruits in spring. Once there, its populations started to increase exponentially until August. From February to September, 5-30% of the mealybugs migrated to the trunk and soil. These results will facilitate an early detection of the pest in the areas where it is spreading and improve sampling protocols and pesticide applications.We thank the owners of the orchards for allowing us to use their plantations, especially Placido Calabuig. We thank Debra Westall (UPV) for English corrections. The authors are also grateful to two anonymous reviewers for helpful comments and corrections. This research was supported by two predoctoral grants (FPU to V.M.-B. and Val I+d to J.P.-R. from the Spanish Ministry of Education, Culture and Sport and Generalitat Valenciana, respectively), a national project provided by Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) (project no. RTA2014-00067) and the European grants FP7-IAPP #324475 'Colbics' and FP7-IRSES #612566 'Biomodic'.Martínez-Blay, V.; Pérez-Rodríguez, J.; Tena Barreda, A.; Soto Sánchez, AI. (2018). Seasonal Distribution and Movement of the Invasive Pest Delottococcus aberiae (Hemiptera: Pseudococcidae) Within Citrus Tree: Implications for Its Integrated Management. Journal of Economic Entomology. 111(6):2684-2692. https://doi.org/10.1093/jee/toy279S26842692111

    Propiedades de las rocas volcánicas de Canarias (España) utilizadas como material de escollera

    Get PDF
    In the Canary Islands, there is a wide spectrum of volcanic rocks with different properties to be used in public works. The aim of this study is to analyse the physical-mechanical properties of all the volcanic rocks present in the Canary Island archipelago in order to determine their suitability for use in maritime construction works. The great variety of volcanic rocks present on the islands have been grouped into lithotypes based on similar geo-mechanical behaviour. The laboratory test results obtained for these lithotypes establish their suitability or not to be used as breakwater material in accordance with Spanish regulations.En el archipiélago canario existe un amplio espectro de rocas volcánicas con diferentes propiedades para ser utilizadas en obras públicas. El objetivo de este estudio es analizar las propiedades físico-mecánicas de todas las rocas volcánicas presentes en el archipiélago canario con el fin de determinar su idoneidad para ser utilizadas en obras de construcción marítima. La gran variedad de rocas volcánicas presentes en las islas, se han agrupado en litotipos basados en un comportamiento geomecánico similar. Los resultados de los ensayos de laboratorio obtenidos para estos litotipos establecen su idoneidad o no para ser utilizados como material de escollera de acuerdo con la normativa española

    Recycling and valorization of LDPE: direct transformation into highly ordered doped-carbon materials and their application as electro-catalysts for the oxygen reduction reaction

    Get PDF
    This research has been supported by the Spanish projects from Junta de Andalucia P12-RNM-2892 and Grant ref. RNM172. The authors also thank the "Unidad de Excelencia Quimica Aplicada a Biomedicina y Medioambiente" of the University of Granada (UEQ -UGR) for its technical assistance. E. Bailon-Garcia is grateful to Junta de Andalucia for her postdoctoral fellowship (P18-RTJ-2974).The energy demand and the environmental situation make the development of advanced catalysts for energy applications necessary. Considering the large volumes of plastic waste, the transformation of organic polymers into advanced carbon functional materials that are able to accomplish the oxygen reduction reaction via the desired 4-electron pathway is proposed as an integrated environmental remediation, in which plastic pollutants are converted into catalysts for fuel cells. Carbon-based electrocatalysts were obtained by pyrolyzing low-density polyethylene at low temperature by an easy one-step method that involves the generation of autogenous pressure which is the responsible for the spherical shape as well as the high degree of graphitization. The addition of transition metals (Fe, Co or Ni) modifies the carbonization process and CNFs emerge. The metal-free material leads to a purely 2e− pathway; however, the presence of metals improves all electrochemical parameters and the desired 4e−pathway is achieved. The graphitization degree, the metal dispersion and the presence of CNFs are the key factors for the ORR performance.Junta de Andalucia P12-RNM-2892 RNM172 P18-RTJ-297

    Water footprint of the water cycle of Gran Canaria and Tenerife (Canary Islands, Spain)

    Get PDF
    When it comes to exploiting natural resources, islands have limitations due to the quantity of these resources and the potential for harm to the ecosystem if exploitation is not done in a sustainable manner. This article presents a study of the water footprint of the different drinking water collection facilities and wastewater treatment facilities in the Canary Islands, in order to determine the blue, green, and grey water footprints in each case. The results show high percentages of drinking water losses, which raises the blue water footprint of the Canary Islands archipelago. The grey water footprint was studied in terms of Biochemical Oxygen Demand (BOD5 ). The green water footprint was not considered because it is a dimension of the water footprint mainly calculated for agricultural crops. Of the facilities studied, the wells for extraction of drinking water from the aquifer and the distribution network have the largest blue water footprint for the years under study (2019 and 2020). Only the wastewater treatment plants have a gray water footprint in this study, with values between 79,000 and 108,000 m3 per year. As a general conclusion, the most important factor in reducing the water footprint of the water cycle in the Canary Islands is optimization of the water resource, improving existing infrastructures to minimize losses, and implementing a greater circular economy that reuses water on a regular basis. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.This research was funded by the European Union's Horizon 2020 research and innovation program under grant agreement 101037424, project ARSINOE (climate-resilient regions through systemic solutions and innovations). : The development of this study has been possible thanks to the government of the Canary Islands, through the project “Analysis of the carbon and water footprint of the three main economic activities in the Canary Islands: Tourism, Agriculture and Integrated Water Cycle”, under grant agreement N◦ 20160026

    Leisure Boating Environmental Footprint: A Study of Leisure Marinas in Palermo, Italy

    Get PDF
    Ports have played a significant role in the touristic development and further economic growth of Italy. It is the country with the highest number of berths among the nations in the Mediterranean Sea; over time, Italy has created ports with a range of functions. Therefore, it is of vital importance to evaluate the potential pollutants generated from these docks and propose ways to eliminate those problems. A survey that asked about the carbon footprint and the quality of the water in the water footprint calculation was created and distributed to the management of the marinas’ operations. After receiving the completed surveys, the data were analyzed and translated using emission factors into tons of CO2 equivalent. The amount of greenhouse gases generated by the investigated marinas was determined by calculating the carbon and water footprints of five representative Palermo marinas, and we aimed to better understand how these port-related operations affect the environment. To pinpoint the pollutant sources within the investigated marinas, an original P-Mapping/Pareto ratio approach was performed as supported by Pareto’s principle. The findings indicated that the primary operations of the marina sector are the main sources of pollution. However, a sizable portion of the emissions were also caused by pollution from supporting operations. Based on the study, the origins of CO2 and pollution in marina operations were clarified. The results obtained enable the authors to make recommendations that all recreational boating activities should be closely supervised in order to reduce CO2 emissions and their input in relation to environmental degradation

    Comparative study of the environmental footprints of marinas on European Islands

    Get PDF
    Ports have been key elements in Europe's economic development. This situation is even more relevant on islands, which are highly dependent on the maritime sector. Consequently, over the years, ports with diverse functionalities have been established both in mainland Europe and on its outlying islands. This article discusses the environmental impact of leisure marinas on European islands, especially as they are closely linked to economic development through tourism. The aim is to study the environmental impact of these infrastructures by determining the carbon and water footprints of marinas on European islands in the Atlantic and the Mediterranean. The results obtained enable the authors to make recommendations in order to reduce the overall environmental footprint of marinas on islands, considering that these territories are much more vulnerable to climate change than mainland locations in Europe

    Guía práctica: Preguntas y respuestas sobre cómo desarrollar los Planes de Orientación y Acción Tutorial (POAT) en la enseñanza universitaria

    Get PDF
    Esta guía es una aproximación al desarrollo práctico de los planes de Orientación y Acción tutorial (POAT) en la Universidad de La Laguna (ULL), centrando especialmente la atención en el modelo de la tutoría de carrera. En la guía y siguiendo un formato de preguntas frecuentes, tratamos de abordar algunos aspectos básicos para la implantación de los programas POAT y el desarrollo de actividades con el alumnado, incluyendo referencias y ejemplos prácticos. En cualquier caso, son simplemente ideas y sugerencias para la práctica, que requerirán su adaptación, en tanto que cada contexto y cada realidad es diferente, lo que exige respuestas adaptadas a las mismas
    corecore