430 research outputs found
Flavour and Collider Interplay for SUSY at LHC7
The current 7 TeV run of the LHC experiment shall be able to probe gluino and
squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are
found in the jets plus missing energy channel by the end of a 5 fb run,
we explore the flavour constraints on three models with a CMSSM-like spectrum:
the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In
particular, we focus on decays that might have been measured by the time the
run is concluded, such as and . We also analyse
constraints imposed by neutral meson bounds and electric dipole moments. The
interplay between collider and flavour experiments is explored through the use
of three benchmark scenarios, finding the flavour feedback useful in order to
determine the model parameters and to test the consistency of the different
models.Comment: 44 pages, 15 figures; v3: minor corrections, added references,
updated figures. Version accepted for publicatio
Prospects for dark matter detection with IceCube in the context of the CMSSM
We study in detail the ability of the nominal configuration of the IceCube
neutrino telescope (with 80 strings) to probe the parameter space of the
Constrained MSSM (CMSSM) favoured by current collider and cosmological data.
Adopting conservative assumptions about the galactic halo model and the
expected experiment performance, we find that IceCube has a probability between
2% and 12% of achieving a 5sigma detection of dark matter annihilation in the
Sun, depending on the choice of priors for the scalar and gaugino masses and on
the astrophysical assumptions. We identify the most important annihilation
channels in the CMSSM parameter space favoured by current constraints, and we
demonstrate that assuming that the signal is dominated by a single annihilation
channel canlead to large systematic errors in the inferred WIMP annihilation
cross section. We demonstrate that ~ 66% of the CMSSM parameter space violates
the equilibrium condition between capture and annihilation in the center of the
Sun. By cross-correlating our predictions with direct detection methods, we
conclude that if IceCube does detect a neutrino flux from the Sun at high
significance while direct detection experiments do not find a signal above a
spin-independent cross section sigma_SI^p larger than 5x10^{-9} pb, the CMSSM
will be strongly disfavoured, given standard astrophysical assumptions for the
WIMP distribution. This result is robust with respect to a change of priors. We
argue that the proposed low-energy DeepCore extension of IceCube will be an
ideal instrument to focus on relevant CMSSM areas of parameter space.Comment: 32 pages, 12 figures. Updated discussion of comparison with direct
detection. References added. Main results unchanged. Matches version accepted
by JCA
Estudio de la Plataforma Continental Española. Hoja MC057-Málaga. Serie C: Modelos y Geomorfología.
Peer reviewe
- …