33 research outputs found

    SH2db, an information system for the SH2 domain

    Get PDF
    SH2 domains are key mediators of phosphotyrosine-based signalling, and therapeutic targets for diverse, mostly oncological, disease indications. They have a highly conserved structure with a central beta sheet that divides the binding surface of the protein into two main pockets, responsible for phosphotyrosine binding (pY pocket) and substrate specificity (pY + 3 pocket). In recent years, structural databases have proven to be invaluable resources for the drug discovery community, as they contain highly relevant and up-to-date information on important protein classes. Here, we present SH2db, a comprehensive structural database and webserver for SH2 domain structures. To organize these protein structures efficiently, we introduce (i) a generic residue numbering scheme to enhance the comparability of different SH2 domains, (ii) a structure-based multiple sequence alignment of all 120 human wild-type SH2 domain sequences and their PDB and AlphaFold structures. The aligned sequences and structures can be searched, browsed and downloaded from the online interface of SH2db (http://sh2db.ttk.hu), with functions to conveniently prepare multiple structures into a Pymol session, and to export simple charts on the contents of the database. Our hope is that SH2db can assist researchers in their day-to-day work by becoming a one-stop shop for SH2 domain related research

    Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome

    Get PDF
    Dicyemids, previously called "mesozoans" (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only approximately 30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to approximately 67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies

    Detergent-free extraction of a functional low-expressing GPCR from a human cell line

    Get PDF
    Dopamine receptors (DRs) are class A G-Protein Coupled Receptors (GPCRs) prevalent in the central nervous system (CNS). These receptors mediate physiological functions ranging from voluntary movement and reward recognition to hormonal regulation and hypertension. Drugs targeting dopaminergic neurotransmission have been employed to treat several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, Huntington's disease, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. In vivo, incorporation of GPCRs into lipid membranes is known to be key to their biological function and, by inference, maintenance of their tertiary structure. A further significant challenge in the structural and biochemical characterization of human DRs is their low levels of expression in mammalian cells. Thus, the purification and enrichment of DRs whilst retaining their structural integrity and function is highly desirable for biophysical studies. A promising new approach is the use of styrene–maleic acid (SMA) copolymer to solubilize GPCRs directly in their native environment, to produce polymer-assembled Lipodisqs (LQs). We have developed a novel methodology to yield detergent-free D1-containing Lipodisqs directly from HEK293f cells expressing wild-type human dopamine receptor 1 (D1). We demonstrate that D1 in the Lipodisq retains activity comparable to that in the native environment and report, for the first time, the affinity constant for the interaction of the peptide neurotransmitter neurotensin (NT) with D1, in the native state

    Common activation mechanism of class A GPCRs.

    Get PDF
    Funder: Young Talent Program of ShanghaiClass A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. Understanding receptor activation mechanism is critical for discovering novel therapeutics since about one-third of all marketed drugs target members of this family. GPCR activation is an allosteric process that couples agonist binding to G-protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue level changes of this movement remain less well understood. Here, we report a framework to quantify conformational changes. By analyzing the conformational changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY, Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with G-protein coupling region. Site-directed mutagenesis experiments support this proposition and reveal that rational mutations of residues in this pathway can be used to obtain receptors that are constitutively active or inactive. The common activation pathway provides the mechanistic interpretation of constitutively activating, inactivating and disease mutations. As a module responsible for activation, the common pathway allows for decoupling of the evolution of the ligand binding site and G-protein-binding region. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature

    In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR

    Get PDF
    A plethora of databases exist online that can assist in in silico chemical or drug safety assessment. However, a systematic review and grouping of databases, based on purpose and information content, consolidated in a single source has been lacking. To resolve this issue, this review provides a comprehensive listing of the key in silico data resources relevant to: chemical identity and properties, drug action, toxicology (including nano-material toxicity), exposure, omics, pathways, Absorption, Distribution, Metabolism and Elimination (ADME) properties, clinical trials, pharmacovigilance, patents-related databases, biological (genes, enzymes, proteins, other macromolecules etc.) databases, protein-protein interactions (PPIs), environmental exposure related, and finally databases relating to animal alternatives in support of 3Rs policies. More than nine hundred databases were identified and reviewed against criteria relating to accessibility, data coverage, interoperability or application programming interface (API), appropriate identifiers, types of in vitro-in vivo -clinical data recorded and suitability for modelling, read-across or similarity searching. This review also specifically addresses the need for solutions for mapping and integration of databases into a common platform for better translatability of preclinical data to clinical data
    corecore