23,085 research outputs found

    Generating functional analysis of complex formation and dissociation in large protein interaction networks

    Full text link
    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.Comment: 14 pages, to be published in Proc of IW-SMI-2009 in Kyoto (Journal of Phys Conference Series

    Entropy and Entanglement in Quantum Ground States

    Full text link
    We consider the relationship between correlations and entanglement in gapped quantum systems, with application to matrix product state representations. We prove that there exist gapped one-dimensional local Hamiltonians such that the entropy is exponentially large in the correlation length, and we present strong evidence supporting a conjecture that there exist such systems with arbitrarily large entropy. However, we then show that, under an assumption on the density of states which is believed to be satisfied by many physical systems such as the fractional quantum Hall effect, that an efficient matrix product state representation of the ground state exists in any dimension. Finally, we comment on the implications for numerical simulation.Comment: 7 pages, no figure

    On topological phases of spin chains

    Full text link
    Symmetry protected topological phases of one-dimensional spin systems have been classified using group cohomology. In this paper, we revisit this problem for general spin chains which are invariant under a continuous on-site symmetry group G. We evaluate the relevant cohomology groups and find that the topological phases are in one-to-one correspondence with the elements of the fundamental group of G if G is compact, simple and connected and if no additional symmetries are imposed. For spin chains with symmetry PSU(N)=SU(N)/Z_N our analysis implies the existence of N distinct topological phases. For symmetry groups of orthogonal, symplectic or exceptional type we find up to four different phases. Our work suggests a natural generalization of Haldane's conjecture beyond SU(2).Comment: 18 pages, 7 figures, 2 tables. Version v2 corresponds to the published version. It includes minor revisions, additional references and an application to cold atom system

    Electronic heat current rectification in hybrid superconducting devices

    Full text link
    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.Comment: 9 pages, 5 color figure

    Phase instabilities in hexagonal patterns

    Get PDF
    The general form of the amplitude equations for a hexagonal pattern including spatial terms is discussed. At the lowest order we obtain the phase equation for such patterns. The general expression of the diffusion coefficients is given and the contributions of the new spatial terms are analysed in this paper. From these coefficients the phase stability regions in a hexagonal pattern are determined. In the case of Benard-Marangoni instability our results agree qualitatively with numerical simulations performed recently.Comment: 6 pages, 6 figures, to appear in Europhys. Let
    corecore