212 research outputs found

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio

    Uniform approximation for the overlap caustic of a quantum state with its translations

    Full text link
    The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known to have a caustic along the corresponding classical closed phase space curve in the case of a single degree of freedom. Its Fourier transform, the semiclassical chord function, also has a caustic along the conjugate curve defined as the locus of diameters, i.e. the maximal chords of the original curve. If the latter is convex, so is its conjugate, resulting in a simple fold caustic. The uniform approximation through this caustic, that is here derived, describes the transition undergone by the overlap of the state with its translation, from an oscillatory regime for small chords, to evanescent overlaps, rising to a maximum near the caustic. The diameter-caustic for the Wigner function is also treated.Comment: 14 pages, 9 figure

    Physical properties of the Schur complement of local covariance matrices

    Get PDF
    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12\rho_{12} described by a 4×44\times 4 covariance matrix \textbf{V}, the Schur complement of a local covariance submatrix V1\textbf{V}_1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to a nn-partite Gaussian state is given and it is demonstrated that the n1n-1 system state conditioned to a partial parity projection is given by a covariance matrix such as its 2×22 \times 2 block elements are Schur complements of special local matrices.Comment: 10 pages. Replaced with final published versio

    Initial state dependence in multi-electron threshold ionization of atoms

    Full text link
    It is shown that the geometry of multi-electron threshold ionization in atoms depends on the initial configuration of bound electrons. The reason for this behavior is found in the stability properties of the classical fixed point of the equations of motion for multiple threshold fragmentation. Specifically for three-electron break-up, apart from the symmetric triangular configuration also a break-up of lower symmetry in the form of a T-shape can occur, as we demonstrate by calculating triple photoionization for the lithium ground and first excited states. We predict the electron break-up geometry for threshold fragmentation experiments

    Universal quantum signature of mixed dynamics in antidot lattices

    Get PDF
    We investigate phase coherent ballistic transport through antidot lattices in the generic case where the classical phase space has both regular and chaotic components. It is shown that the conductivity fluctuations have a non-Gaussian distribution, and that their moments have a power-law dependence on a semiclassical parameter, with fractional exponents. These exponents are obtained from bifurcating periodic orbits in the semiclassical approximation. They are universal in situations where sufficiently long orbits contribute.Comment: 7 page

    Decoherence of Semiclassical Wigner Functions

    Get PDF
    The Lindblad equation governs general markovian evolution of the density operator in an open quantum system. An expression for the rate of change of the Wigner function as a sum of integrals is one of the forms of the Weyl representation for this equation. The semiclassical description of the Wigner function in terms of chords, each with its classically defined amplitude and phase, is thus inserted in the integrals, which leads to an explicit differential equation for the Wigner function. All the Lindblad operators are assumed to be represented by smooth phase space functions corresponding to classical variables. In the case that these are real, representing hermitian operators, the semiclassical Lindblad equation can be integrated. There results a simple extension of the unitary evolution of the semiclassical Wigner function, which does not affect the phase of each chord contribution, while dampening its amplitude. This decreases exponentially, as governed by the time integral of the square difference of the Lindblad functions along the classical trajectories of both tips of each chord. The decay of the amplitudes is shown to imply diffusion in energy for initial states that are nearly pure. Projecting the Wigner function onto an orthogonal position or momentum basis, the dampening of long chords emerges as the exponential decay of off-diagonal elements of the density matrix.Comment: 23 pg, 2 fi
    corecore