34 research outputs found

    High-field electron spin resonance in low-dimensional spin systems

    Get PDF
    Due to recent progress in theory and the growing number of physical realizations, low-dimensional quantum magnets continue to receive a considerable amount of attention. They serve as model systems for investigating numerous physical phenomena in spin systems with cooperative ground states, including the field-induced evolution of the ground-state properties and the corresponding rearrangement of their low-energy excitation spectra. This work is devoted to systematic studies of recently synthesized low-dimensional quantum spin systems by means of multi-frequency high-field electron spin resonance (ESR) investigations. In the spin- 1/2 chain compound (C6H9N2)CuCl3 [known as (6MAP)CuCl3] the striking incompatibility with a simple uniform S = 1/2 Heisenberg chain model employed previously is revealed. The observed ESR mode is explained in terms of a recently developed theory, revealing the important role of the alternation and next-nearest-neighbor interactions in this compound. The excitations spectrum in copper pyrimidine dinitrate [PM·Cu(NO3)2(H2O)2]n, an S = 1/2 antiferromagnetic chain material with alternating g-tensor and Dzyaloshinskii-Moriya interaction, is probed in magnetic fields up to 63 T. To study the high field behavior of the field-induced energy gap in this material, a multi-frequency pulsed-field ESR spectrometer is built. Pronounced changes in the frequency-field dependence of the magnetic excitations are observed in the vicinity of the saturation field, B ∼ Bs = 48.5 T. ESR results clearly indicate a transition from the soliton-breather to a spin-polarized state with magnons as elementary excitations. Experimental data are compared with results of density matrix renormalization group calculations; excellent agreement is found. ESR studies of the spin-ladder material (C5H12N)2CuBr4 (known as BPCB) completes the determination of the full spin Hamiltonian of this compound. ESR results provide a direct evidence for a pronounced anisotropy in this compound, that is in contrast to fully isotropic spin-ladder model employed previously for BPCB. Our observations can be of particular importance for describing the rich temperature-field phase diagram of this material. The frequency-field diagram of magnetic excitations in the quasi-two dimensional S = 1/2 compound [Cu(C4H4N2)2(HF2)]PF6 in the AFM-ordered state is studied. The AFM gap is observed directly. Using high-field magnetization and ESR results, parameters of the effective spin-Hamiltonian (exchange interaction, anisotropy and g-factor) are obtained and compared with those estimated from thermodynamic properties of this compound

    Magnetic field tuning of crystal field levels and vibronic states in Spin-ice Ho2Ti2O7 observed in far-infrared reflectometry

    Full text link
    Low temperature optical spectroscopy in applied magnetic fields provides clear evidence of magnetoelastic coupling in the spin ice material Ho2Ti2O7. In IR measurements, we observe field dependent features around 61, 72 and 78 meV, energies corresponding to crystal electronic field doublets. Calculating the electronic band structure based on the crystal field Hamiltonian allows determination of crystal field energies, values for the crystal field parameters, and confirmation that the observed features in IR are consistent with magnetic-dipole-allowed transitions between 5I8 CEF levels. Additionally, we identify a weak field-dependent feature near one of the CEF doublets, which we associate with a vibronic bound state that was previously observed by others in inelastic neutron measurements

    gg-factor engineering with InAsSb alloys toward zero band gap limit

    Full text link
    Band gap is known as an effective parameter for tuning the Lande gg-factor in semiconductors and can be manipulated in a wide range through the bowing effect in ternary alloys. In this work, using the recently developed virtual substrate technique, high-quality InAsSb alloys throughout the whole Sb composition range are fabricated and a large gg-factor of g≈−90g\approx -90 at the minimum band gap of ∼0.1\sim 0.1 eV, which is almost twice that in bulk InSb is found. Further analysis to the zero gap limit reveals a possible gigantic gg-factor of g≈−200g\approx -200 with a peculiar relativistic Zeeman effect that disperses as the square root of magnetic field. Such a gg-factor enhancement toward the narrow gap limit cannot be quantitatively described by the conventional Roth formula, as the orbital interaction effect between the nearly triply degenerated bands becomes the dominant source for the Zeeman splitting. These results may provide new insights into realizing large gg-factors and spin polarized states in semiconductors and topological materials

    Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet

    Full text link
    Two-dimensional (2D) magnetic systems possess versatile magnetic order and can host tunable magnons carrying spin angular momenta. Recent advances show angular momentum can also be carried by lattice vibrations in the form of chiral phonons. However, the interplay between magnons and chiral phonons as well as the details of chiral phonon formation in a magnetic system are yet to be explored. Here, we report the observation of magnon-induced chiral phonons and chirality selective magnon-phonon hybridization in a layered zigzag antiferromagnet (AFM) FePSe3_3. With a combination of magneto-infrared and magneto-Raman spectroscopy, we observe chiral magnon polarons (chiMP), the new hybridized quasiparticles, at zero magnetic field. The hybridization gap reaches 0.25~meV and survives down to the quadrilayer limit. Via first principle calculations, we uncover a coherent coupling between AFM magnons and chiral phonons with parallel angular momenta, which arises from the underlying phonon and space group symmetries. This coupling lifts the chiral phonon degeneracy and gives rise to an unusual Raman circular polarization of the chiMP branches. The observation of coherent chiral spin-lattice excitations at zero magnetic field paves the way for angular momentum-based hybrid phononic and magnonic devices

    Probing the Magnetic Anisotropy of Co(II) Complexes Featuring Redox-Active Ligands

    Get PDF
    Coordination complexes that possess large magnetic anisotropy (otherwise known as zero-field splitting, ZFS) have possible applications in the field of magnetic materials, including single molecule magnets (SMMs). Previous studies have explored the role of coordination number and geometry in controlling the magnetic anisotropy and SMM behavior of high-spin (S = 3/2) Co(II) complexes. Building upon these efforts, the present work examines the impact of ligand oxidation state and structural distortions on the spin states and ZFS parameters of pentacoordinate Co(II) complexes. The five complexes included in this study (1–5) have the general formula, [Co(TpPh2)(LX,Y)]n+ (X = O, S; Y = N, O; n = 0 or 1), where TpPh2 is the scorpionate ligand hydrotris(3,5-diphenyl-pyrazolyl)borate(1−) and LX,Y are bidentate dioxolene-type ligands that can access multiple oxidation states. The specific LX,Y ligands used herein are 4,6-di-tert-butyl substituted o-aminophenolate and o-aminothiophenolate (1 and 2, respectively), o-iminosemiquinonate and o-semiquinonate radicals (3 and 4, respectively), and o-iminobenzoquinone (5). Each complex exhibits a distorted trigonal bipyramidal geometry, as revealed by single-crystal X-ray diffraction. Direct current (dc) magnetic susceptibility experiments confirmed that the complexes with closed-shell ligands (1, 2, and 5) possess S = 3/2 ground states with negative D-values (easy-axis anisotropy) of −41, −78, and −30 cm–1, respectively. For 3 and 4, antiferromagnetic coupling between the Co(II) center and o-(imino)semiquinonate radical ligand results in S = 1 ground states that likewise exhibit very large and negative anisotropy (−100 \u3e D \u3e −140 cm–1). Notably, ZFS was measured directly for each complex using far-infrared magnetic spectroscopy (FIRMS). In combination with high-frequency and -field electron paramagnetic resonance (HFEPR) studies, these techniques provided precise spin-Hamiltonian parameters for complexes 1, 2, and 5. Multireference ab initio calculations, using the CASSCF/NEVPT2 approach, indicate that the strongly negative anisotropies of these Co(II) complexes arise primarily from distortions in the equatorial plane due to constrictions imposed by the TpPh2 ligand. This effect is further amplified by cobalt(II)-radical exchange interactions in 3 and 4

    Spectroscopic analysis of vibronic relaxation pathways in molecular spin qubit [Ho(W5O18)2]9−: sparse spectra are key

    Get PDF
    Vibrations play a prominent role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the magneto-infrared properties of the molecular spin qubit system Na9[Ho(W5O18)2]·35H2O. Our results place significant constraints on the pattern of crystal field levels and the vibrational excitations allowing us to unravel vibronic decoherence pathways in this system. We observe field-induced spectral changes near 63 and 370 cm-1 that are modeled in terms of odd-symmetry vibrations mixed with f-manifold crystal field excitations. The overall extent of vibronic coupling in Na9[Ho(W5O18)2]·35H2O is limited by a modest coupling constant (on the order of 0.25) and a transparency window in the phonon density of states that acts to keep the intramolecular vibrations and MJ levels apart. These findings advance the understanding of vibronic coupling in a molecular magnet with atomic clock transitions and suggest strategies for designing molecular spin qubits with improved coherence lifetimes

    Magnetic proximity-induced energy gap of topological surface states

    Full text link
    Topological crystalline insulator surface states can acquire an energy gap when time reversal symmetry is broken by interfacing with a magnetic insulator. Such hybrid topological-magnetic insulator structures can be used to generate novel anomalous Hall effects and to control the magnetic state of the insulator in a spintronic device. In this work, the energy gap of topological surface states in proximity with a magnetic insulator is measured using Landau level spectroscopy. The measurements are carried out on Pb1-xSnxSe/EuSe heterostructures grown by molecular beam epitaxy exhibiting record mobility and a low Fermi energy enabling this measurement. We find an energy gap that does not exceed 20meV and we show that is due to the combined effect of quantum confinement and magnetic proximity. The presence of magnetism at the interface is confirmed by magnetometry and neutron reflectivity. The recovered energy gap sets an upper limit for the Fermi level needed to observe the quantized anomalous Hall effect using magnetic proximity heterostructures
    corecore