189 research outputs found

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    An Improved Limit on the Muon Electric Dipole Moment

    Get PDF
    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muon, as well as the combined result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table

    Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries

    Get PDF
    We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.Comment: 17 page

    Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering

    Get PDF
    We have measured the spin-dependent structure function g1pg_1^p in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003<x<0.70.003 < x < 0.7 and 1GeV2<Q2<60GeV21 GeV^2 < Q^2 < 60 GeV^2. A next-to-leading order QCD analysis is used to evolve the measured g1p(x,Q2)g_1^p(x,Q^2) to a fixed Q02Q^2_0. The first moment of g1pg_1^p at Q02=10GeV2Q^2_0 = 10 GeV^2 is Γp=0.136±0.013(stat.)±0.009(syst.)±0.005(evol.)\Gamma^p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.). This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge a0a_0 is found to be 0.28±0.160.28 \pm 0.16. In the Adler-Bardeen factorization scheme, Δg2\Delta g \simeq 2 is required to bring ΔΣ\Delta \Sigma in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical Review

    HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

    Get PDF
    BACKGROUND: Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. METHODS: HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp) expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. RESULTS: In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (a widely used HIF-1α inhibitor) or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. CONCLUSIONS: MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance

    Cell Survival from Chemotherapy Depends on NF-κB Transcriptional Up-Regulation of Coenzyme Q Biosynthesis

    Get PDF
    9 pages and 6 figures.[Background] Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells.[Methodology/Principal Findings] CPT activates NF-κB that binds specifically to two κB binding sites present in the 5′-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-κB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-κB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells.[Conclusions/Significance] We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-κB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway.This work was supported by spanish Ministerio de Educacion y Ciencia Grant BFU2005-03017.Peer reviewe
    corecore