5,456 research outputs found

    Universal Uncertainty Principle in the Measurement Operator Formalism

    Full text link
    Heisenberg's uncertainty principle has been understood to set a limitation on measurements; however, the long-standing mathematical formulation established by Heisenberg, Kennard, and Robertson does not allow such an interpretation. Recently, a new relation was found to give a universally valid relation between noise and disturbance in general quantum measurements, and it has become clear that the new relation plays a role of the first principle to derive various quantum limits on measurement and information processing in a unified treatment. This paper examines the above development on the noise-disturbance uncertainty principle in the model-independent approach based on the measurement operator formalism, which is widely accepted to describe a class of generalized measurements in the field of quantum information. We obtain explicit formulas for the noise and disturbance of measurements given by the measurement operators, and show that projective measurements do not satisfy the Heisenberg-type noise-disturbance relation that is typical in the gamma-ray microscope thought experiments. We also show that the disturbance on a Pauli operator of a projective measurement of another Pauli operator constantly equals the square root of 2, and examine how this measurement violates the Heisenberg-type relation but satisfies the new noise-disturbance relation.Comment: 11 pages. Based on the author's invited talk at the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'2005), Besancon, France, May 2-6, 200

    Conservation laws, uncertainty relations, and quantum limits of measurements

    Get PDF
    The uncertainty relation between the noise operator and the conserved quantity leads to a bound for the accuracy of general measurements. The bound extends the assertion by Wigner, Araki, and Yanase that conservation laws limit the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general measurements, and improves the one previously obtained by Yanase for spin measurements. The bound also sets an obstacle to making a small quantum computer.Comment: 4 pages, RevTex, to appear in PR

    Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement

    Get PDF
    The Heisenberg uncertainty principle states that the product of the noise in a position measurement and the momentum disturbance caused by that measurement should be no less than the limit set by Planck's constant, hbar/2, as demonstrated by Heisenberg's thought experiment using a gamma-ray microscope. Here I show that this common assumption is false: a universally valid trade-off relation between the noise and the disturbance has an additional correlation term, which is redundant when the intervention brought by the measurement is independent of the measured object, but which allows the noise-disturbance product much below Planck's constant when the intervention is dependent. A model of measuring interaction with dependent intervention shows that Heisenberg's lower bound for the noise-disturbance product is violated even by a nearly nondisturbing, precise position measuring instrument. An experimental implementation is also proposed to realize the above model in the context of optical quadrature measurement with currently available linear optical devices.Comment: Revtex, 6 page

    The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)

    Full text link
    This tutorial is devoted to review the modern tools of quantum mechanics, which are suitable to describe states, measurements, and operations of realistic, not isolated, systems in interaction with their environment, and with any kind of measuring and processing devices. We underline the central role of the Born rule and and illustrate how the notion of density operator naturally emerges, together the concept of purification of a mixed state. In reexamining the postulates of standard quantum measurement theory, we investigate how they may formally generalized, going beyond the description in terms of selfadjoint operators and projective measurements, and how this leads to the introduction of generalized measurements, probability operator-valued measures (POVM) and detection operators. We then state and prove the Naimark theorem, which elucidates the connections between generalized and standard measurements and illustrates how a generalized measurement may be physically implemented. The "impossibility" of a joint measurement of two non commuting observables is revisited and its canonical implementations as a generalized measurement is described in some details. Finally, we address the basic properties, usually captured by the request of unitarity, that a map transforming quantum states into quantum states should satisfy to be physically admissible, and introduce the notion of complete positivity (CP). We then state and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate the connections between the CP-maps description of quantum operations, together with their operator-sum representation, and the customary unitary description of quantum evolution. We also address transposition as an example of positive map which is not completely positive, and provide some examples of generalized measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Wigner-Araki-Yanase theorem on Distinguishability

    Get PDF
    The presence of an additive conserved quantity imposes a limitation on the measurement process. According to the Wigner-Araki-Yanase theorem, the perfect repeatability and the distinguishability on the apparatus cannot be attained simultaneously. Instead of the repeatability, in this paper, the distinguishability on both systems is examined. We derive a trade-off inequality between the distinguishability of the final states on the system and the one on the apparatus. The inequality shows that the perfect distinguishability of both systems cannot be attained simultaneously.Comment: To be published in Phys.Rev.

    Instruments and channels in quantum information theory

    Full text link
    While a positive operator valued measure gives the probabilities in a quantum measurement, an instrument gives both the probabilities and the a posteriori states. By interpreting the instrument as a quantum channel and by using the typical inequalities for the quantum and classical relative entropies, many bounds on the classical information extracted in a quantum measurement, of the type of Holevo's bound, are obtained in a unified manner.Comment: 12 pages, revtex

    Solution to the Mean King's problem with mutually unbiased bases for arbitrary levels

    Get PDF
    The Mean King's problem with mutually unbiased bases is reconsidered for arbitrary d-level systems. Hayashi, Horibe and Hashimoto [Phys. Rev. A 71, 052331 (2005)] related the problem to the existence of a maximal set of d-1 mutually orthogonal Latin squares, in their restricted setting that allows only measurements of projection-valued measures. However, we then cannot find a solution to the problem when e.g., d=6 or d=10. In contrast to their result, we show that the King's problem always has a solution for arbitrary levels if we also allow positive operator-valued measures. In constructing the solution, we use orthogonal arrays in combinatorial design theory.Comment: REVTeX4, 4 page

    Instabilities in Zakharov Equations for Laser Propagation in a Plasma

    Full text link
    F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov system arising in the study of Laser-plasma interaction, is locally well posed in the whole space, for fields vanishing at infinity. Here we show that in the periodic case, seen as a model for fields non-vanishing at infinity, the system develops strong instabilities of Hadamard's type, implying that the Cauchy problem is strongly ill-posed

    Conservative Quantum Computing

    Full text link
    Conservation laws limit the accuracy of physical implementations of elementary quantum logic gates. If the computational basis is represented by a component of spin and physical implementations obey the angular momentum conservation law, any physically realizable unitary operators with size less than n qubits cannot implement the controlled-NOT gate within the error probability 1/(4n^2), where the size is defined as the total number of the computational qubits and the ancilla qubits. An analogous limit for bosonic ancillae is also obtained to show that the lower bound of the error probability is inversely proportional to the average number of photons. Any set of universal gates inevitably obeys a related limitation with error probability O(1/n^2)$. To circumvent the above or related limitations yielded by conservation laws, it is recommended that the computational basis should be chosen as the one commuting with the additively conserved quantities.Comment: 5 pages, RevTex. Corrected to include a new statement that for bosonic ancillae the lower bound of the error probability is inversely proportional to the average number of photons, kindly suggested by Julio Gea-Banacloch

    Perforated exit regions for the reduction of micro-pressure waves from tunnels

    Get PDF
    The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council (20117 00029), (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).Peer reviewedPostprin
    • 

    corecore