3 research outputs found

    Texture formation in FePt thin films via thermal stress management

    Get PDF
    The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses

    High resolution magnetic force microscopy of patterned L1(0)-FePt dot arrays by nanosphere lithography

    Get PDF
    High resolution magnetic force microscopy (MFM) has been carried out on L1(0)-FePt dot arrays patterned by plasma modified nanosphere lithography. An ex situ tip magnetization reversal experiment is carried out to determine the magnetic domains and verify the imaging stability of MFM and the mutual perturbations between the magnetic tip and the sample. We have identified that the critical size for the single domain region is about 90 nm across. Comparison with MFM image simulation also suggests that the magnetizations of the triangular dots in both single and double domain states are parallel to one edge of the dots, indicating the large uniaxial magnetocrystalline anisotropy of the L1(0)-FePt phase and the need for decreasing the magnetostatic energy
    corecore