11 research outputs found

    The role of the BMP pathway in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the western world and an improved understanding of the molecular pathways involved in CRC could potentially allow improved prediction and personalized therapy. The BMP pathway is known to be crucial for the maintenance of intestinal homeostasis and deregulation of this pathway is known to contribute to colorectal cancer formation. The studies presented in this thesis provide evidence that the BMP pathway is an important homeostatic pathway and that, both in normal tissue and in cancer, BMP signaling is influenced by (cancer-associated) fibroblasts. The outcome of BMP signaling on the epithelial cells appears to be dependent on the bioavailability of BMPs and, importantly, on the presence of a functional intracellular BMP pathway. LUMC / Geneeskund

    Extracellular BMP Antagonists, Multifaceted Orchestrators in the Tumor and Its Microenvironment

    Get PDF
    The bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-beta (TGF-beta) superfamily, are involved in multiple biological processes such as embryonic development and maintenance of adult tissue homeostasis. The importance of a functional BMP pathway is underlined by various diseases, including cancer, which can arise as a consequence of dysregulated BMP signaling. Mutations in crucial elements of this signaling pathway, such as receptors, have been reported to disrupt BMP signaling. Next to that, aberrant expression of BMP antagonists could also contribute to abrogated signaling. In this review we set out to highlight how BMP antagonists affect not only the cancer cells, but also the other cells present in the microenvironment to influence cancer progression.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Kinome-wide analysis of the effect of statins in colorectal cancer

    Get PDF
    Background Epidemiological studies and meta-analyses show an association between statin use and a reduced incidence of colorectal cancer (CRC). We have shown that statins act on CRC through bone morphogenetic protein (BMP) signalling, but the exact cellular targets and underlying mechanism of statin action remain elusive. In this study, we set out to assess the influence of statins on global cancer cell signalling by performing an array-based kinase assay using immobilised kinase substrates spanning the entire human kinome. Methods CRC cells with or without Lovastatin treatment were used for kinome analysis. Findings on kinome arrays were further confirmed by immunoblotting with activity-specific antibodies. Experiments in different CRC cell lines using immunoblotting, siRNA-mediated knockdown and treatment with specific BMP inhibitor Noggin were performed. The relevance of in vitro findings was confirmed in xenografts and in CRC patients treated with Simvastatin. Results Kinome analysis can distinguish between non-specific, toxic effects caused by 10 mu M of Lovastatin and specific effects on cell signalling caused by 2 mu M Lovastatin. Statins induce upregulation of PTEN activity leading to downregulation of the PI3K/Akt/mTOR signalling. Treatment of cells with the specific BMP inhibitor Noggin as well as PTEN knockdown and transfection of cells with a constitutively active form of AKT abolishes the effect of Lovastatin on mTOR phosphorylation. Experiments in xenografts and in patients treated with Simvastatin confirm statin-mediated BMP pathway activation, activation of PTEN and downregulation of mTOR signalling. Conclusions Statins induce BMP-specific activation of PTEN and inhibition of PI3K/Akt/mTOR signalling in CRC.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Bidirectional tumor/stroma crosstalk promotes metastasis in mesenchymal colorectal cancer

    Get PDF
    Patients with the mesenchymal subtype colorectal cancer (CRC) have a poor prognosis, in particular patients with stroma-rich tumors and aberrant SMAD4 expression. We hypothesized that interactions between SMAD4-deficient CRC cells and cancer-associated fibroblasts provide a biological explanation. In transwell invasion assays, fibroblasts increased the invasive capacity of SMAD4-deficient HT29 CRC cells, but not isogenic SMAD4-proficient HT29 cells. A TGF-beta/BMP-specific array showed BMP2 upregulation by fibroblasts upon stimulation with conditioned medium from SMAD4-deficient CRC cells, while also stimulating their invasion. In a mouse model for experimental liver metastasis, the co-injection of fibroblasts increased metastasis formation of SMAD4-deficient CRC cells (p = 0.02) but not that of SMAD4-proficient CRC cells. Significantly less metastases were seen in mice co-injected with BMP2 knocked-down fibroblasts. Fibroblast BMP2 expression seemed to be regulated by TRAIL, a factor overexpressed in SMAD4-deficient CRC cells. In a cohort of 146 stage III CRC patients, we showed that patients with a combination of high stromal BMP2 expression and the loss of tumor SMAD4 expression had a significantly poorer overall survival (HR 2.88, p = 0.04). Our results suggest the existence of a reciprocal loop in which TRAIL from SMAD4-deficient CRC cells induces BMP2 in fibroblasts, which enhances CRC invasiveness and metastasis.Surgical oncolog

    Loss of bone morphogenetic protein signaling in fibroblasts results in CXCL12-driven serrated polyp development

    Get PDF
    Mutations in Bone Morphogenetic Protein (BMP) Receptor (BMPR)1A and SMAD4 are detected in 50% of juvenile polyposis syndrome (JPS) patients, who develop stroma-rich hamartomatous polyps. The established role of stromal cells in regulating BMP activity in the intestine implies a role for stromal cells in polyp development. We used conditional Cre-LoxP mice to investigate how specific loss of BMPR1A in endothelial cells, fibroblasts, or myofibroblasts/smooth muscle cells affects intestinal homeostasis. Selective loss of BMPR1A in fibroblasts causes severe histological changes in the intestines with a significant increase in stromal cell content and epithelial cell hyperproliferation, leading to numerous serrated polyps. This phenotype suggests that crucial changes occur in the fibroblast secretome that influences polyp development. Analyses of publicly available RNA expression databases identified CXCL12 as a potential candidate. RNAscope in situ hybridization showed an evident increase of Cxcl12-expressing fibroblasts. In vitro, stimulation of fibroblasts with BMPs resulted in downregulation of CXCL12, while inhibition of the BMP pathway resulted in gradual upregulation of CXCL12 over time. Moreover, neutralization of CXCL12 in vivo in the fibroblast-specific BMPR1A KO mice resulted in a significant decrease in polyp formation. Finally, in CRC patient specimens, mRNA-expression data showed that patients with high GREMLIN1 and CXCL12 expression had a significantly poorer overall survival. Significantly higher GREMLIN1, NOGGIN, and CXCL12 expression were detected in the Consensus Molecular Subtype 4 (CMS4) colorectal cancers, which are thought to arise from serrated polyps. Taken together, these data imply that fibroblast-specific BMP signaling-CXCL12 interaction could have a role in the etiology of serrated polyp formation.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Statin use is associated with a reduced incidence of colorectal cancer expressing SMAD4

    Get PDF
    Background Long-term use of statins is associated with a small reduced risk of colorectal cancer but their mechanism of action is not well understood. While they are generally believed to act on KRAS, we have previously proposed that they act via influencing the BMP pathway. The objective of this study was to look for associations between statin use and the risk of developing colorectal cancer of a particular molecular subtype. Methods By linking two registries unique to the Netherlands, 69,272 statin users and 94,753 controls were identified and, if they developed colorectal cancer, their specimens traced. Colorectal cancers were molecularly subtyped according to the expression of SMAD4 and the mutation status of KRAS and BRAF. Results Statin use was associated with a reduction in the risk of developing colorectal cancer regardless of molecular subtype (HR 0.77; 95% CI 0.66-0.89) and a larger reduction in the risk of developing SMAD4-positive colorectal cancer (OR 0.64; 95% CI 0.42-0.82). There was no relationship between statin use and the risk of developing colorectal cancer with a mutation in KRAS and/or BRAF. Conclusions Statin use is associated with a reduced risk of developing colorectal cancer with intact SMAD4 expression.Experimentele farmacotherapi

    The role of the BMP pathway in colorectal cancer

    No full text
    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the western world and an improved understanding of the molecular pathways involved in CRC could potentially allow improved prediction and personalized therapy. The BMP pathway is known to be crucial for the maintenance of intestinal homeostasis and deregulation of this pathway is known to contribute to colorectal cancer formation. The studies presented in this thesis provide evidence that the BMP pathway is an important homeostatic pathway and that, both in normal tissue and in cancer, BMP signaling is influenced by (cancer-associated) fibroblasts. The outcome of BMP signaling on the epithelial cells appears to be dependent on the bioavailability of BMPs and, importantly, on the presence of a functional intracellular BMP pathway. </p

    The sensitivity of pan-TRK immunohistochemistry in solid tumours: A meta-analysis

    Get PDF
    Introduction: Since the approval of neurotrophic tropomyosin receptor kinase (NTRK) tyrosine kinase inhibitors for fist-line advanced stage pan-cancer therapy, pathologists and molecular biologists have been facing a complex question: how should the large volume of specimens be screened for NTRK fusions? Immunohistochemistry is fast and cheap, but the sensitivity compared to RNA NGS is unclear.Methods: We performed RNA-based next-generation sequencing on 1,329 cases and stained 24 NTRK-rearranged cases immunohistochemically with pan-TRK (ERP17341). Additionally, we performed a meta-analysis of the literature. After screening 580 studies, 200 additional NTRK-rearranged cases from 13 studies, analysed with sensitive molecular diagnostics as well as pan-TRK IHC, were included.Results: In the included 224 NTRK-rearranged solid tumours, the sensitivity for pan-TRK IHC was 82% and the false-negative rate was 18%. NTRK3 fusions had more false negatives (27%) compared to NTRK1 (6%) and NTRK2 (14%) (p = 0.0006). Membranous, nuclear and peri-nuclear staining patterns strongly correlated with different fusion products, with membranous staining being more prevalent in NTRK1 and NTRK2, nuclear in NTRK3, and perinuclear in NTRK1.Conclusion: Despite a reduction in the number of molecular analysis, using pan-TRK immunohistochemistry as a prescreening method to detect NTRK fusions in solid tumours will miss 18% of all NTRK-fused cases (especially involving NTRK3). Therefore, the most comprehensive and optimal option to detect NTRK fusions is to perform molecular testing on all eligible cases. However, in case of financial or logistical limitations, an immunohistochemistry-first approach is defensible in tumours with a low prevalence of NTRK fusions. (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Molecular tumour pathology - and tumour geneticsMTG

    Loss of bone morphogenetic protein signaling in fibroblasts results in CXCL12-driven serrated polyp development

    Get PDF
    Mutations in Bone Morphogenetic Protein (BMP) Receptor (BMPR)1A and SMAD4 are detected in 50% of juvenile polyposis syndrome (JPS) patients, who develop stroma-rich hamartomatous polyps. The established role of stromal cells in regulating BMP activity in the intestine implies a role for stromal cells in polyp development. We used conditional Cre-LoxP mice to investigate how specific loss of BMPR1A in endothelial cells, fibroblasts, or myofibroblasts/smooth muscle cells affects intestinal homeostasis. Selective loss of BMPR1A in fibroblasts causes severe histological changes in the intestines with a significant increase in stromal cell content and epithelial cell hyperproliferation, leading to numerous serrated polyps. This phenotype suggests that crucial changes occur in the fibroblast secretome that influences polyp development. Analyses of publicly available RNA expression databases identified CXCL12 as a potential candidate. RNAscope in situ hybridization showed an evident increase of Cxcl12-expressing fibroblasts. In vitro, stimulation of fibroblasts with BMPs resulted in downregulation of CXCL12, while inhibition of the BMP pathway resulted in gradual upregulation of CXCL12 over time. Moreover, neutralization of CXCL12 in vivo in the fibroblast-specific BMPR1A KO mice resulted in a significant decrease in polyp formation. Finally, in CRC patient specimens, mRNA-expression data showed that patients with high GREMLIN1 and CXCL12 expression had a significantly poorer overall survival. Significantly higher GREMLIN1, NOGGIN, and CXCL12 expression were detected in the Consensus Molecular Subtype 4 (CMS4) colorectal cancers, which are thought to arise from serrated polyps. Taken together, these data imply that fibroblast-specific BMP signaling-CXCL12 interaction could have a role in the etiology of serrated polyp formation
    corecore