177 research outputs found

    Clinical Trial Registration Patterns and Changes in Primary Outcomes of Randomized Clinical Trials from 2002 to 2017

    Get PDF
    This cross-sectional study evaluates the existence and timing of trial registration for randomized clinical trials (RCTs) published from 2002 to 2017 as well as substantive changes to the primary outcomes entered into registry information after those studies started

    Transforming epilepsy research: A systematic review on natural language processing applications

    Get PDF
    Despite improved ancillary investigations in epilepsy care, patients' narratives remain indispensable for diagnosing and treatment monitoring. This wealth of information is typically stored in electronic health records and accumulated in medical journals in an unstructured manner, thereby restricting complete utilization in clinical decision-making. To this end, clinical researchers increasing apply natural language processing (NLP)—a branch of artificial intelligence—as it removes ambiguity, derives context, and imbues standardized meaning from free-narrative clinical texts. This systematic review presents an overview of the current NLP applications in epilepsy and discusses the opportunities and drawbacks of NLP alongside its future implications. We searched the PubMed and Embase databases with a “natural language processing” and “epilepsy” query (March 4, 2022) and included original research articles describing the application of NLP techniques for textual analysis in epilepsy. Twenty-six studies were included. Fifty-eight percent of these studies used NLP to classify clinical records into predefined categories, improving patient identification and treatment decisions. Other applications of NLP had structured clinical information retrieval from electronic health records, scientific papers, and online posts of patients. Challenges and opportunities of NLP applications for enhancing epilepsy care and research are discussed. The field could further benefit from NLP by replicating successes in other health care domains, such as NLP-aided quality evaluation for clinical decision-making, outcome prediction, and clinical record summarization

    An updated systematic review and meta-analysis of brain network organization in focal epilepsy: Looking back and forth

    Get PDF
    Abnormalities of the brain network organization in focal epilepsy have been extensively quantified. However, the extent and directionality of abnormalities are highly variable and subtype insensitive. We conducted meta-analyses to obtain a more accurate and epilepsy type-specific quantification of the interictal global brain network organization in focal epilepsy. By using random-effects models, we estimated differences in average clustering coefficient, average path length, and modularity between patients with focal epilepsy and controls, based on 45 studies with a total sample size of 1,468 patients and 1,021 controls. Structural networks had a significant lower level of integration in patients with epilepsy as compared to controls, with a standardized mean difference of -0.334 (95% confidence interval -0.631 to -0.038; p-value 0.027). Functional networks did not differ between patients and controls, except for the beta band clustering coefficient. Our meta-analyses show that differences in the brain network organization are not as well defined as individual studies often propose. We discuss potential pitfalls and suggestions to enhance the yield and clinical value of network studies

    Potential merits and flaws of large language models in epilepsy care: A critical review

    Get PDF
    The current pace of development and applications of large language models (LLMs) is unprecedented and will impact future medical care significantly. In this critical review, we provide the background to better understand these novel artificial intelligence (AI) models and how LLMs can be of future use in the daily care of people with epilepsy. Considering the importance of clinical history taking in diagnosing and monitoring epilepsy—combined with the established use of electronic health records—a great potential exists to integrate LLMs in epilepsy care. We present the current available LLM studies in epilepsy. Furthermore, we highlight and compare the most commonly used LLMs and elaborate on how these models can be applied in epilepsy. We further discuss important drawbacks and risks of LLMs, and we provide recommendations for overcoming these limitations

    Not surgical technique, but etiology, contralateral MRI, prior surgery, and side of surgery determine seizure outcome after pediatric hemispherotomy

    Get PDF
    OBJECTIVE: We aimed to assess determinants of seizure outcome following pediatric hemispherotomy in a contemporary cohort. METHODS: We retrospectively analyzed the seizure outcomes of 457 children who underwent hemispheric surgery in five European epilepsy centers between 2000 and 2016. We identified variables related to seizure outcome through multivariable regression modeling with missing data imputation and optimal group matching, and we further investigated the role of surgical technique by Bayes factor (BF) analysis. RESULTS: One hundred seventy seven children (39%) underwent vertical and 280 children (61%) underwent lateral hemispherotomy. Three hundred forty-four children (75%) achieved seizure freedom at a mean follow-up of 5.1 years (range 1 to 17.1). We identified acquired etiology other than stroke (odds ratio [OR] 4.4, 95% confidence interval (CI) 1.1-18.0), hemimegalencephaly (OR 2.8, 95% CI 1.1-7.3), contralateral magnetic resonance imaging (MRI) findings (OR 5.5, 95% CI 2.7-11.1), prior resective surgery (OR 5.0, 95% CI 1.8-14.0), and left hemispherotomy (OR 2.3, 95% CI 1.3-3.9) as significant determinants of seizure recurrence. We found no evidence of an impact of the hemispherotomy technique on seizure outcome (the BF for a model including the hemispherotomy technique over the null model was 1.1), with comparable overall major complication rates for different approaches. SIGNIFICANCE: Knowledge about the independent determinants of seizure outcome following pediatric hemispherotomy will improve the counseling of patients and families. In contrast to previous reports, we found no statistically relevant difference in seizure-freedom rates between the vertical and horizontal hemispherotomy techniques when accounting for different clinical features between groups

    The importance of discriminative power rather than significance when evaluating potential clinical biomarkers in epilepsy research

    Get PDF
    OBJECTIVE: The quest for epilepsy biomarkers is on the rise. Variables with statistically significant group-level differences are often misinterpreted as biomarkers with sufficient discriminative power. This study aimed to demonstrate the relationship between significant group-level differences and a variable's power to discriminate between individuals. METHODS: We simulated normal-distributed datasets from hypothetical populations with varying sample sizes (25-800), effect sizes (Cohen's d: .25-2.50), and variability (standard deviation: 10-35) to assess the impact of these parameters on significance and discriminative power. The simulation data were illustrated by assessing the discriminative power of a potential real-case biomarker-the EEG beta band power-to diagnose generalized epilepsy, using data from 66 children with generalized epilepsy and 385 controls. Additionally, we evaluated recently reported epilepsy biomarkers by comparing their effect sizes to our simulation-derived effect size criterion. RESULTS: Group size affects significance but not discriminative power. Discriminative power is much more related to variability and effect size. Our real data example supported these simulation results by demonstrating that group-level significance does not translate, one to one, into discriminative power. Although we found a significant difference in the beta band power between children with and without epilepsy, the discriminative power was poor due to a small effect size. A Cohen's d of at least 1.25 is required to reach good discriminative power in univariable prediction modeling. Slightly over 60% of the biomarkers in our literature search met this criterion. SIGNIFICANCE: Rather than statistical significance of group-level differences, effect size should be used as an indicator of a variable's biomarker potential. The minimal required effects size for individual biomarkers-a Cohen's d of 1.25-is large. This calls for multivariable approaches, in which combining multiple variables with smaller effect sizes could increase the overall effect size and discriminative power

    Design and Evaluation of a Rodent-Specific Transcranial Magnetic Stimulation Coil: An In Silico and In Vivo Validation Study

    Get PDF
    Background: Rodent models are fundamental in unraveling cellular and molecular mechanisms of transcranial magnetic stimulation (TMS)-induced effects on the brain. However, proper translation of human TMS protocols to animal models have been restricted by the lack of rodent-specific focal TMS coils. Objective: We aimed to improve TMS focalization in rodent brain with a novel small, cooled, and rodent-specific TMS coil. Methods: A rodent-specific 25-mm figure-of-eight TMS coil was developed. Stimulation focalization was simulated in silico for the rodent coil and a commercial human 50-mm figure-of-eight TMS coil. Both coils were also compared in vivo by electromyography measurements of brachialis motor evoked potential (MEP) responses to TMS at different brain sites in anesthetized rats (n = 6). Focalization was determined from the coils' level of stimulation laterality. Differences in MEPs were statistically analyzed with repeated-measures, within-subjects, ANOVA. Results: In silico simulation results deemed the human coil insufficient for unilateral stimulation of the rat motor cortex, whereas lateralized electrical field induction was projected attainable with the rodent coil. Cortical, in vivo MEP amplitude measurements from multiple points in each hemisphere, revealed unilateral activation of the contralateral brachialis muscle, in absence of ipsilateral brachialis activation, with both coils. Conclusion: Computer simulations motivated the design of a smaller rodent-specific TMS coil, but came short in explaining the capability of a larger commercial human coil to induce unilateral MEPs in vivo. Lateralized TMS, as demonstrated for both TMS coils, corroborates their use in translational rodent studies, to elucidate mechanisms of action of therapeutic TMS protocols

    The spatial relationship between the MRI lesion and intraoperative electrocorticography in focal epilepsy surgery.

    Get PDF
    MRI and intraoperative electrocorticography are often used in tandem to delineate epileptogenic tissue in resective surgery for focal epilepsy. Both the resection of the MRI lesion and tissue with high rates of electrographic discharges on electrocorticography, e.g. spikes and high-frequency oscillations (80-500 Hz), lead to a better surgical outcome. How MRI and electrographic markers are related, however, is currently unknown. The aim of this study was to find the spatial relationship between MRI lesions and spikes/high-frequency oscillations. We retrospectively included 33 paediatric and adult patients with lesional neocortical epilepsy who underwent electrocorticography-tailored surgery (14 females, median age = 13.4 years, range = 0.6-47.0 years). Mesiotemporal lesions were excluded. We used univariable linear regression to find correlations between pre-resection spike/high-frequency oscillation rates on an electrode and its distance to the MRI lesion. We tested straight lines to the centre and the edge of the MRI lesion, and the distance along the cortical surface to determine which of these distances best reflects the occurrence of spikes/high-frequency oscillations. We conducted a moderator analysis to investigate the influence of the underlying pathology type and lesion volume on our results. We found spike and high-frequency oscillation rates to be spatially linked to the edge of the MRI lesion. The underlying pathology type influenced the spatial relationship between spike/high-frequency oscillation rates and the MRI lesion (P spikes < 0.0001, P ripples < 0.0001), while the lesion volume did not (P spikes = 0.64, P ripples = 0.89). A higher spike rate was associated with a shorter distance to the edge of the lesion for cavernomas [F(1,64) = -1.37, P < 0.0001, η 2 = 0.22], focal cortical dysplasias [F(1,570) = -0.25, P < 0.0001, η 2 = 0.05] and pleomorphic xanthoastrocytomas [F(1,66) = -0.18, P = 0.01, η 2 = 0.09]. In focal cortical dysplasias, a higher ripple rate was associated with a shorter distance [F(1,570) = -0.35, P < 0.0001, η 2 = 0.05]. Conversely, low-grade gliomas showed a positive correlation; the further an electrode was away from the lesion, the higher the rate of spikes [F(1,75) = 0.65, P < 0.0001, η 2 = 0.37] and ripples [F(1,75) = 2.67, P < 0.0001, η 2 = 0.22]. Pathophysiological processes specific to certain pathology types determine the spatial relationship between the MRI lesion and electrocorticography results. In our analyses, non-tumourous lesions (focal cortical dysplasias and cavernomas) seemed to intrinsically generate spikes and high-frequency oscillations, particularly at the border of the lesion. This advocates for a resection of this tissue. Low-grade gliomas caused epileptogenicity in the peritumoural tissue. Whether a resection of this tissue leads to a better outcome is unclear. Our results suggest that the underlying pathology type should be considered when intraoperative electrocorticography is interpreted

    Incidence of and predictors for antiseizure medication gaps in Medicare beneficiaries with epilepsy: a retrospective cohort study.

    Get PDF
    BACKGROUND For the two-thirds of patients with epilepsy who achieve seizure remission on antiseizure medications (ASMs), patients and clinicians must weigh the pros and cons of long-term ASM treatment. However, little work has evaluated how often ASM discontinuation occurs in practice. We describe the incidence of and predictors for sustained ASM fill gaps to measure discontinuation in individuals potentially eligible for ASM withdrawal. METHODS This was a retrospective cohort of Medicare beneficiaries. We included patients with epilepsy by requiring International Classification of Diseases codes for epilepsy/convulsions plus at least one ASM prescription each year 2014-2016, and no acute visit for epilepsy 2014-2015 (i.e., potentially eligible for ASM discontinuation). The main outcome was the first day of a gap in ASM supply (30, 90, 180, or 360 days with no pills) in 2016-2018. We displayed cumulative incidence functions and identified predictors using Cox regressions. RESULTS Among 21,819 beneficiaries, 5191 (24%) had a 30-day gap, 1753 (8%) had a 90-day gap, 803 (4%) had a 180-day gap, and 381 (2%) had a 360-day gap. Predictors increasing the chance of a 180-day gap included number of unique medications in 2015 (hazard ratio [HR] 1.03 per medication, 95% confidence interval [CI] 1.01-1.05) and epileptologist prescribing physician (≄25% of that physician's visits for epilepsy; HR 2.37, 95% CI 1.39-4.03). Predictors decreasing the chance of a 180-day gap included Medicaid dual eligibility (HR 0.75, 95% CI 0.60-0.95), number of unique ASMs in 2015 (e.g., 2 versus 1: HR 0.37, 95% CI 0.30-0.45), and greater baseline adherence (> 80% versus ≀80% of days in 2015 with ASM pill supply: HR 0.38, 95% CI 0.32-0.44). CONCLUSIONS Sustained ASM gaps were rarer than current guidelines may suggest. Future work should further explore barriers and enablers of ASM discontinuation to understand the optimal discontinuation rate
    • 

    corecore