157 research outputs found

    Distinct seasonal dynamics of responses to elevated CO2 in two understorey grass species differing in shade-tolerance

    Get PDF
    Understorey plant communities are crucial to maintain species diversity and ecosystem processes including nutrient cycling and regeneration of overstorey trees. Most studies exploring effects of elevated CO2 concentration ([CO2]) in forests have, however, been done on overstorey trees, while understorey communities received only limited attention. The hypothesis that understorey grass species differ in shade-tolerance and development dynamics, and temporally exploit different niches under elevated [CO2], was tested during the fourth year of [CO2] treatment. We assumed stimulated carbon gain by elevated [CO2] even at low light conditions in strongly shade-tolerant Luzula sylvatica, while its stimulation under elevated [CO2] in less shade-tolerant Calamagrostis arundinacea was expected only in early spring when the tree canopy is not fully developed. We found evidence supporting this hypothesis. While elevated [CO2] stimulated photosynthesis in L. sylvatica mainly in the peak of the growing season (by 55%-57% in July and August), even at low light intensities (50 mu mol m(-2) s(-1)), stimulatory effect of [CO2] in C. arundinacea was found mainly under high light intensities (200 mu mol m(-2) s(-1)) at the beginning of the growing season (increase by 171% in May) and gradually declined during the season. Elevated [CO2] also substantially stimulated leaf mass area and root-to-shoot ratio in L. sylvatica, while only insignificant increases were observed in C. arundinacea. Our physiological and morphological analyses indicate that understorey species, differing in shade-tolerance, under elevated [CO2] exploit distinct niches in light environment given by the dynamics of the tree canopy

    Growth and Timber Quality of European Larch Planted in Areas Reclaimed After Coal Mining in Central Poland

    Get PDF
    Understanding the impact of reclamation measures on the quality of timber produced in post-mining areas is crucial for the proper establishment of future forest cultures on such sites. We studied European larch trees (Larix decidua Mill.) grown since 1981 on the external dump of a brown coal mine in Bełchatów (Central Poland). In particular, the effects of stand admixture and the intensity of mineral fertilization, applied in the initial phase of tree growth, on the increments and quality of larch wood were evaluated. Total tree height and stem diameter of 4-meter sections were measured. Qualitative timber classification took into account the share of wood defects, which excluded the timber from a higher quality-dimensional class. Larch trees grown in a monoculture had a better quality of wood compared to larch grown mixed with other species. Fertilization, applied in the initial afforestation period, had only a limited effect on the growth of larch trees. Curvature and knots determined timber quality most significantly. While knots had a decisive importance in larch growing in the monoculture stands, curvature determined wood quality in the admixed larch stands

    Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees

    Get PDF
    The role of trees in the nitrous oxide (N2O) balance of boreal forests has been neglected despite evidence suggesting their substantial contribution. We measured seasonal changes in N2O fluxes from soil and stems of boreal trees in Finland, showing clear seasonality in stem N2O flux following tree physiological activity, particularly processes of CO2 uptake and release. Stem N2O emissions peak during the vegetation season, decrease rapidly in October, and remain low but significant to the annual totals during winter dormancy. Trees growing on dry soils even turn to consumption of N2O from the atmosphere during dormancy, thereby reducing their overall N2O emissions. At an annual scale, pine, spruce and birch are net N2O sources, with spruce being the strongest emitter. Boreal trees thus markedly contribute to the seasonal dynamics of ecosystem N2O exchange, and their species-specific contribution should be included into forest emission inventories.Peer reviewe

    Correction of PRI for carotenoid pigment pools improves photosynthesis estimation across different irradiance and temperature conditions

    Get PDF
    We studied the influence of changing carotenoid pigments on the sensitivity of the photochemical reflectance index (PRI) to photosynthesis dynamics. The goal of the measurements was to examine how the introduction of ΔPRI into the working dataset can improve the estimation of photosynthesis. Spectral and photosynthetic characteristics of European beech and Norway spruce saplings were periodically measured in growth chambers with an adjustable irradiance and temperature. Patterns of environmental changes inside the growth chambers were created by periodic changes in irradiance and temperature. Four general irradiance periods lasting 10-12 days each were established. Introduced irradiance regimes varied in the sum of daily irradiance and amplitude of irradiance changes. Temperature was changed with more complex patterns to induce changes in xanthophyll cycle pigments at various time scales within these regimes. Our measurements confirmed the PRI linkage to photosynthetic light use efficiency (LUE). However, the strength of this connection was found to be dependent on changing pigment concentrations, specifically on the change in the ratio of chlorophylls to carotenoids. Furthermore, a negative interference in photosynthesis estimation from PRI was recorded if the temperature was lowered overnight to 12 °C. The differential PRI (ΔPRI), calculated as the simple difference between the PRI value measured during the daytime period and in early morning (PRI0), revealed a decreased effect from pigments and cold temperature on LUE estimation. The regression analysis among all measured data identified an increased association between PRI and LUE following the introduction of ΔPRI from R2 = 0.26 to 0.69 in beech and from R2 = 0.61 to 0.77 in spruce data. The analyses showed that both leaf carotenoid concentrations and the conversion state of xanthophyll cycle pigments played a significant role in determining PRI and PRI0 values and that the accurate assessment of these pigments in PRI across multiple levels of stress from irradiance and temperature might improve estimations of LUE through ΔPRI. In our data, ΔPRI appeared to be a good measure of photosynthesis, the dynamics of which differed between beech and spruce saplings upon switching temperatures

    Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles

    Get PDF
    A dedicated field experiment was conducted to investigate the response of a green reflectance continuum removal-based optical index, called area under the curve normalized to maximal band depth between 511nm and 557nm (ANMB511-557), to light-induced transformations in xanthophyll cycle pigments of Norway spruce [Picea abies (L.) Karst] needles. The performance of ANMB511-557 was compared with the photochemical reflectance index (PRI) computed from the same leaf reflectance measurements. Needles of four crown whorls (fifth, eighth, 10th, and 15th counted from the top) were sampled from a 27-year-old spruce tree throughout a cloudy and a sunny day. Needle optical properties were measured together with the composition of the photosynthetic pigments to investigate their influence on both optical indices. Analyses of pigments showed that the needles of the examined whorls varied significantly in chlorophyll content and also in related pigment characteristics, such as the chlorophyll/carotenoid ratio. The investigation of the ANMB511-557 diurnal behaviour revealed that the index is able to follow the dynamic changes in the xanthophyll cycle independently of the actual content of foliar pigments. Nevertheless, ANMB511-557 lost the ability to predict the xanthophyll cycle behaviour during noon on the sunny day, when the needles were exposed to irradiance exceeding 1000 µmol m-2 s-1. Despite this, ANMB511-557 rendered a better performance for tracking xanthophyll cycle reactions than PRI. Although declining PRI values generally responded to excessive solar irradiance, they were not able to predict the actual de-epoxidation state in the needles examine

    The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments

    Get PDF
    Background and aims: UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. Methods: We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. Key results: The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora: parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). Conclusions: The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.Peer reviewe

    Metabolome-wide, phylogenetically controlled comparison indicates higher phenolic diversity in tropical tree species

    Get PDF
    Tropical plants are expected to have a higher variety of defensive traits, such as a more diverse array of secondary metabolic compounds in response to greater pressures of antagonistic interactions, than their temperate counterparts. We test this hypothesis using advanced metabolomics linked to a novel stoichiometric compound classification to analyze the complete foliar metabolomes of four tropical and four temperate tree species, which were selected so that each subset contained the same amount of phylogenetic diversity and evenness. We then built Bayesian phylogenetic multilevel models to test for tropical-temperate differences in metabolite diversity for the entire metabolome and for four major families of secondary compounds. We found strong evidence supporting that the leaves of tropical tree species have a higher phenolic diversity. The functionally closer group of polyphenolics also showed moderate evidence of higher diversity in tropical species, but there were no differences either for the entire metabolome or for the other major families of compounds analyzed. This supports the interpretation that this tropical-temperate contrast must be related to the functional role of phenolics and polyphenolics

    We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris

    Get PDF
    Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.This research was funded by the research fellowship (JAE) from the CSIC (A.R.-U), the European Research Council Synergy grant SyG-2013-610028 IMBALANCE-P (J.P., J.S.), the Spanish Government projects CGL2016-48074-P and OAPN 022/2008 (PROPINOL) (J.P., J.S.), the Catalan Government project SGR 2014-274 (J.P., J.S.), DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research at the Pacific Northwest National Laboratory (A.R.-U), and by the Ministry of Education, Youth and Sports of the Czech Republic (grant No. CZ.02.1.01/0.0/0.0/16_013/0001609, and No. LO1415) (O.U., M.O)

    Similar local but different systemic metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth

    Get PDF
    Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at elemental and molecular levels have focused on the elemental composition or/and certain molecular compounds or specific families of defensive metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and to avoid those with higher levels of defensive compounds. We performed stoichiometric and metabolomics, local and systemic, analyses in two subspecies of Pinus sylvestris under the attack by the caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Both pine subspecies responded locally to folivory mainly by increasing the relative concentrations of terpenes and some phenolics. Systemic responses differed between subspecies and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Our results support the hypothesis that foliar nutrient concentrations are not a key factor of an alleged plant selection by adult female processionary moths for oviposition since folivory was not associated with any of the elements analyzed. Phenolic compounds did not generally increase in the attacked trees questioning thus their commonly proposed induction by folivory attack and their anti-feeding properties. Herbivory attack produced a general systemic shift in pines, including both primary and secondary metabolisms, that was less intense and chemically different from the local responses. Local pine responses were similar between subspecies while systemic responses were more distant between them
    corecore