127 research outputs found

    METHOD DEVELOPMENT AND VALIDATION OF THE CHROMATOGRAPHIC ANALYSIS OF FLUTICASONE PROPIONATE AND SALMETEROL XINAFOATE COMBINATION IN SOLUTIONS AND HUMAN PLASMA USING HPLC WITH UV DETECTION

    Get PDF
    Objective: A simple, Rapid, and sensitive HPLC method utilizing UV detection was developed and validated for the simultaneous estimation of Fluticasone propionate (FP) and Salmeterol xinafoate (SX) in solutions and in vitro human plasma. Methods: Chromatographic analysis was done on SUPELCO® RP-C18 column (150 x 4.6 mm, 5 μm particle size) with an isocratic mobile phase composed of methanol, acetonitrile, and water (50:20:30, v/v) mixture while flow rate was set to 1 ml/min. Detection with UV at maximum absorbance wavelength (ʎmax) values of 236 and 252 for FP and SX, respectively. Spiked plasma samples were liquid-liquid extracted by diethyl ether and reconstituted using methanol. Results: Method was accurate and precise over a linear (R2>0.995) range of (0.067-100 µg/ml) and (0.0333-50 µg/ml) for FP and SX, respectively. LOD/lOQ values were 0.13/0.6 and 0.06/0.3 µg/ml for FP and SX, respectively. The developed method was successfully applied for the analysis of FP and SX in spiked human plasma samples. The method is considered to be accurate and precise over a linear (R2>0.9969) range of (6.67-66.67 µg/ml) and (3.33-33.3 µg/ml) for FP and SX, respectively. Extraction efficiency was approved by recovery values of (94.98–102.46 %) and (96.54–102.62 %) for FP and SX, respectively. Conclusion: This validated method revealed simple and cheap extraction procedures and detectors, non-buffered mobile phase, and short retention times with excellent resolution

    Mouse eye gene microarrays for investigating ocular development and disease

    Get PDF
    AbstractMicroarray technology can facilitate simultaneous expression analysis of thousands of genes and assist in delineating cellular pathways involved in development or disease pathogenesis. Since public databases and commercial cDNA microarrays have an under-representation of eye-expressed genes, we generated over 3000 expressed sequence tags from three unamplified mouse eye/retina cDNA libraries. These eye-expressed genes were used to produce cDNA microarrays. Methodology for printing of slides, hybridization, scanning and data analysis has been optimized. The I-gene microarrays will be useful for establishing expression profiles of the mouse eye/retina and provide a resource for defining molecular pathways involved in development, aging and disease

    Comparing variant calling algorithms for target-exon sequencing in a large sample

    Get PDF
    Abstract Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.http://deepblue.lib.umich.edu/bitstream/2027.42/110906/1/12859_2015_Article_489.pd

    Fabrication of H2S gas sensors using ZnxCu1-xFe2O4 nanoparticles

    Get PDF
    Spinel ferrite nanoparticles can be easily retrieved and utilized for multiple cycles due to their magnetic properties. In this work, nanoparticles of a ZnxCu1-xFe2O4 composition were synthesized by employing a sol–gel auto-combustion technique. The morphology, composition, and crystal structure were examined using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The produced nanoparticles are in the range of 30–70 nm and manifest spinel cubic structure. The nanoparticles were tested for their sensitivity to H2 and H2S gases, and the Cu-based spinel ferrite nanoparticles were found the most sensitive and selective to H2S gas. Their enhanced response to H2S gas was attributed to the production of metallic CuFeS2 that manifest higher electrical conductivity as compared with CuFe2O4. The fabricated sensors are functional at low temperatures, and consequently, they need low operational power. They are also simple to fabricate with appropriate cost

    Authentication of butter from lard adulteration using high-resolution of nuclear magnetic resonance spectroscopy and high-performance liquid chromatography

    Get PDF
    Food authentication is an interesting issue for all parties in the food industry, including the fats and oils industry. Some unethical players try to blend high-quality foods, such as butter, with lower ones like lard, therefore, the analytical methods capable of analyzing the adulteration practices must be developed. This study used proton nuclear magnetic resonance spectroscopy in combination with high-performance liquid chromatography for the authentication of butter from lard adulteration. The identification of triacylglycerol composition of lard as a chemical marker for halal authentication is analyzed using high-performance liquid chromatography and high resolution nuclear magnetic resonance spectroscopy. The suitability of proton nuclear magnetic resonance provides a high-performance approach for determination butter adulterated with lard in their entirety of all proton bearing components. Peaks in the region of 2.60–2.84 ppm show special characteristics only present in lard. Only lard has its own unique characteristics which only polyunsaturated fatty acids would give signals 7 at δ 2.63, that corresponded to the chemical shift of the double-allylic methylene protons. In the same way, the intensity of signal at 2.63 ppm, due to methylenic protons in a position α to two double bonds, that is to say, due to the linoleic group. Furthermore, we also correlate some signals between 1H and 13C-NMR spectra for the confirmation of signals

    Comparing variant calling algorithms for target-exon sequencing in a large sample

    Full text link
    Abstract Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.http://deepblue.lib.umich.edu/bitstream/2027.42/134735/1/12859_2015_Article_489.pd

    Distinct Signature of Altered Homeostasis in Aging Rod Photoreceptors: Implications for Retinal Diseases

    Get PDF
    Advanced age contributes to clinical manifestations of many retinopathies and represents a major risk factor for age-related macular degeneration, a leading cause of visual impairment and blindness in the elderly. Rod photoreceptors are especially vulnerable to genetic defects and changes in microenvironment, and are among the first neurons to die in normal aging and in many retinal degenerative diseases. The molecular mechanisms underlying rod photoreceptor vulnerability and potential biomarkers of the aging process in this highly specialized cell type are unknown.To discover aging-associated adaptations that may influence rod function, we have generated gene expression profiles of purified rod photoreceptors from mouse retina at young adult to early stages of aging (1.5, 5, and 12 month old mice). We identified 375 genes that showed differential expression in rods from 5 and 12 month old mouse retina compared to that of 1.5 month old retina. Quantitative RT-PCR experiments validated expression change for a majority of the 25 genes that were examined. Macroanalysis of differentially expressed genes using gene class testing and protein interaction networks revealed overrepresentation of cellular pathways that are potentially photoreceptor-specific (angiogenesis and lipid/retinoid metabolism), in addition to age-related pathways previously described in several tissue types (oxidative phosphorylation, stress and immune response).Our study suggests a progressive shift in cellular homeostasis that may underlie aging-associated functional decline in rod photoreceptors and contribute to a more permissive state for pathological processes involved in retinal diseases

    Effect of extraction procedure on the yield and biological activities of hydroxychavicol from Piper betle L. leaves

    Get PDF
    Piper betle Linn is one of the most common ethnomedicinal plants with its extract being popularly used in the modern product to enhance functionality. However, extraction methods always lead to differences in biological activities. The objectives of this study were to evaluate the effects of the extraction methods on the yield and biological activities of hydroxychavicol from P. betle L. extracts and to determine the correlation between the hydroxychavicol content and biological activities of P. betle L. extracts such as antioxidant, antimicrobial, and anticancer properties. The purity of the hydroxychavicol and its concentration (quantitative) in the crude extracts were also evaluated using a reverse-phase HPLC while GC–MS was employed to determine other components (qualitative). The results showed that only certain extraction procedures gave high yields of hydroxychavicol as well as remarkable biological activities. The chloroform extract following boiling with water (M2) gave the highest percentage of hydroxychavicol content based on the HPLC analysis. M2 and pure hydroxychavicol actively inhibited all the five cancer cell lines studied except A549. M2 showed more effective inhibition activity against MCF 7 with an IC50 of 1.74 ug/mL. M2 extract also showed strong antibacterial activity against all the bacteria strains as well as a strong antifungal activity against Candida albicans. There was, however, a weak correlation between the hydroxychavicol content and the biological activities of P. betle L. extracts. In conclusion, extraction procedures greatly affect the yield and biological activities of hydroxychavicol from P. betle L. The designation of a single compound such as hydroxychavicol as a bioactive chemical marker compound in the P. betle L. extracts, however, is not enough to determine the biological activities of the extract

    T Helper 1 Cellular Immunity Toward Recoverin Is Enhanced in Patients With Active Autoimmune Retinopathy

    Get PDF
    Autoimmune retinopathy (AIR) causes rapidly progressive vision loss that is treatable but often is confused with other forms of retinal degeneration including retinitis pigmentosa (RP). Measurement of anti-retinal antibodies (ARA) by Western blot is a commonly used laboratory assay that supports the diagnosis yet does not reflect current disease activity. To search for better diagnostic indicators, this study was designed to compare immune biomarkers and responses toward the retinal protein, recoverin, between newly diagnosed AIR patients, slow progressing RP patients and healthy controls. All individuals had measurable anti-recoverin IgG and IgM antibodies by ELISA regardless of disease status or Western blot results. Many AIR patients had elevated anti-recoverin IgG1 levels and a strong cellular response toward recoverin dominated by IFNÎł. RP patients and controls responded to recoverin with a lower IFNÎł response that was balanced by IL-10 production. Both AIR and RP patients displayed lower levels of total peripheral blood mononuclear cells that were due to reductions of CD4+ TH cells. A comparison of messenger RNA (mRNA) for immune-related genes in whole blood of AIR patients versus RP patients or controls indicated lower expression of ATG5 and PTPN22 and higher expression of several genes involved in TH cell signaling/transcription and adhesion. These data indicate that an immune response toward recoverin is normal in humans, but that in AIR patients the balance shifts dramatically toward higher IFNÎł production and cellular activation

    A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies

    Get PDF
    Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.This work was supported by grants R01EY007961 from the National Eye Institute (H.K. and A.S.), R01HD04260 from the National Institute of Child Health and Development (N.K.), R01DK072301, R01DK075972 (N.K.), R01DK068306, R01DK064614, R01DK069274 (F.H.), NRSA fellowship F32 DK079541 (E.E.D.) from the National Institute of Diabetes, Digestive and Kidney disorders, Intramural program of NEI (A.S.), the Macular Vision Research Foundation (N.K.), the Foundation for Fighting Blindness (H.K., S.S.B., A.S. and N.K.), the Foundation for Fighting Blindness Canada (R.K.K.), Le Fonds de la recherche en sante du Québec (FRSQ) (R.K.K.), Research to Prevent Blindness (A.S.), Harold Falls Collegiate Professorship (A.S.), the Midwest Eye Banks and Transplantation Center (H.K.), the Searle Scholars Program (M.A.B.), the Deutsche Forschungsgemeinschaft (DFG grant BE 3910/4-1; C.B.) the UK Medical Research Council (grant number G0700073; C.A.J.), NIHR Biomedical Research Centre for Ophthalmology (S.S.B.) and EU-GENORET Grant LSHG-CT-2005-512036 (S.S.B.). F.H. is an investigator of the Howard Hughes Medical Institute (HHMI) and a Doris Duke Distinguished Clinical Scientist (DDCF)
    • …
    corecore