942 research outputs found

    Measurement of neutron diffraction with compact neutron source RANS

    Get PDF
    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials

    Apoptosis and p53 status predict the efficacy of postoperative administration of UFT in non-small cell lung cancer

    Get PDF
    To examine whether efficacy of postoperative oral administration of UFT, a 5-fluorouracil derivative chemotherapeutic agent, may be influenced by incidence of apoptosis (apoptosis index) or apoptosis-related gene status (p53 and bcl-2) of the tumour, a total of 162 patients with pathologic stage I non-small cell lung cancer were retrospectively reviewed. UFT was administrated postoperatively to 44 patients (UFT group), and not to the other 118 patients (Control group). For all patients, 5-year survival rate of the UFT group (79.9%) seemed higher than that of the Control group (69.8%), although without significant difference (P = 0.054). For patients with higher apoptotic index, 5-year survival rate of the UFT group (83.3%) was significantly higher than that of the Control group (67.6%, P = 0.039); for patients with lower apoptotic index, however, there was no difference in the prognosis between these two groups. Similarly, UFT was effective for patients without p53 aberrant expression (5-year survival rates: 95.2% for the UFT group and 74.3% for the Control group, P = 0.022), whereas not effective for patients with p53 aberrant expression. Bcl-2 status did not influence the efficacy of UFT. In conclusion, apoptotic index and p53 status are useful factors to predict the efficacy of postoperative adjuvant therapy using UFT. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Simulation and Design of a Simple and Easy-to-use Small-scale Neutron Source at Kyoto University

    Get PDF
    AbstractA simple and easy-to-use compact neutron source based on a low power level proton accelerator (proton energy 3.5 MeV and 0.35kW beam power) at Kyoto University was designed with the conception of low cost, compact size, high safety and intensive thermal neutron flux via Monte Carlo method with PHITS code. By utilizing (p, n) reactions in a beryllium target coupled to a polyethylene moderator and graphite reflector with a wing configuration, this facility is expected to produce time-averaged thermal neutron fluxes suitable for neutron scattering and development of instrumentation, and play a role in educating students in neutron science and performing research with neutrons. Borated polyethylene (BPE) and ordinary concrete were combined to shield the neutron and photon. By using niobium as target backing and water as cooler, it is promising to cope with the problem of thermal damage and hydrogen embrittlement damage. The sizes of moderator and reflector are optimized to have thermal neutron flux as high as possible, while keeping the low ratio of fast neutron flux to thermal neutron flux. The neutron and gamma dose equivalent rates were evaluated and the current shielding configuration is acceptable

    STRUCTURAL RELAXATION IN AMORPHOUS Fe_<40>Ni_<40>P_<14>B_<6> ALLOY STUDIED BY POSITRON ANNIHILATION AND ELECTRICAL RESISTIVITY MEASUREMENT

    Get PDF
    The Doppler broadening lineshape of 511 keV γ-ray emitted from positron annihilation, positron lifetime and electrical resistivity of the Fe_Ni_P_B_ amorphous alloy have been measured for the isochronal annealing of 0-500 ℃ temperature range. W-parameter of the Doppler broadening lineshape increased in two stages by annealing below crystallization temperature. These increases appear to be due to the loss of excess free volume in the amorphous alloy. The results indicate that structure of this amorphous alloy relax in two stages and excess free volume losses in the two stage

    Texture evaluation in ductile fracture process by neutron diffraction measurement

    Get PDF
    A neutron diffraction measurement was performed to reveal microstructural aspects of the ductile fracture in ferritic steel. The diffraction patterns were continuously measured at the center of the reduced area while a tensile specimen was loaded under tension until the end of the fracture process. The measurement results showed that the volume fraction of (110)-oriented grains increased when the texture evolved as a result of plastic deformation. But the mechanism of texture evolution may be changed during necking, decreasing an increase rate of the volume fraction

    Performance of the LHD cryogenic system during cooling and excitation tests

    Get PDF
    Performance of the LHD cryogenic system in the first year\u27s operation was described making importance on the recovery process after the normal transition of the helical coils. During the excitation tests of the LHD superconducting coils up to 2.75 T, the normal zone propagation was observed in the helical coil and the emergency shut-off of the coil power supplies was carried out. 2,700 l of liquid helium evaporated from the helical coils. The coils and the helium refrigerator were separated automatically and the helium refrigerator could keep its steady state operation. After the pressure and flow rate of the recovery gas from the helical coils were settled down to the normal state, the coils were connected to the helium refrigerator and the cooling was restarted. The system could return to the steady state in which coil excitation is enabling, by only three and a half hour
    corecore